Suppr超能文献

阻断药物外排机制有助于在高产纤维素分解真菌绳状青霉NCIM1228中进行基因组工程改造。

Blocking drug efflux mechanisms facilitate genome engineering process in hypercellulolytic fungus, Penicillium funiculosum NCIM1228.

作者信息

Randhawa Anmoldeep, Pasari Nandita, Sinha Tulika, Gupta Mayank, Nair Anju M, Ogunyewo Olusola A, Verma Sandhya, Verma Praveen Kumar, Yazdani Syed Shams

机构信息

Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.

DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.

出版信息

Biotechnol Biofuels. 2021 Jan 25;14(1):31. doi: 10.1186/s13068-021-01883-4.

Abstract

BACKGROUND

Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus.

RESULTS

Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome.

CONCLUSIONS

In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.

摘要

背景

绳状青霉NCIM1228是一种非模式丝状真菌,能产生用于木质纤维素生物质糖化的高质量分泌组。尽管绳状青霉具有成为工业主力菌株的优良特性,但由于缺乏可靠的基因工程工具,它一直被低估。对常见真菌抗生素的耐受性一直是开发针对非模式真菌的可靠转化工具的主要障碍之一。在本研究中,我们试图了解绳状青霉的耐药机制并找到应对方法。然后,我们尝试确定一种用于该真菌基因组工程的可靠转化方法。

结果

绳状青霉对潮霉素、博来霉素和诺尔丝菌素表现出高度耐药性,从而阻碍了它们作为选择标记来获得重组转化体。转录组分析表明,属于ABC和MFS家族的外排泵高度表达,尤其是在生长培养基中使用复合碳源时。通过结合使用外排泵抑制剂和合适的碳源来优化抗生素选择培养基,以防止耐药性。尝试了原生质体介导和农杆菌介导的转化,以确定线性和环状DNA在进行基因操作时的效率。在发现基于Ti质粒的农杆菌介导的转化更适合绳状青霉后,我们改进了该系统,分别实现了基于随机和同源重组的基因整合和缺失。我们发现T-DNA盒的单拷贝随机整合,并且在基于同源重组的基因缺失中可以达到60%的效率。还为绳状青霉开发了一种更快、无质粒且基于原生质体的CRISPR/Cas9基因编辑系统。为了展示其在绳状青霉中的实用性,我们使用一对靶向cbh1开放阅读框两端的sgRNA删除了编码最丰富的纤维素酶纤维二糖水解酶I(CBH1)的基因。对∆cbh1菌株的功能分析揭示了其对绳状青霉分泌组纤维素分解特性的重要性。

结论

在本研究中,我们解决了绳状青霉的耐药性问题,并开发了一套用于其基因组修饰的优化工具包。因此,我们为使用传统和先进方法对绳状青霉进行基因功能分析和进一步的遗传改良奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e1d/7836482/e66fa2ad2dfd/13068_2021_1883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验