Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain; Departament de Genètica, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.
Food Microbiol. 2021 Jun;96:103685. doi: 10.1016/j.fm.2020.103685. Epub 2020 Dec 27.
Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.
在葡萄酒发酵过程中,酿酒酵母对氮的需求高度依赖菌株。本研究采用不同的方法来探索 28 株葡萄酒酵母的氮需求。根据不同氮浓度下的生长和发酵行为,选择了高氮需求和低氮需求的菌株,并通过竞争发酵进一步验证。通过恒化培养分析了指数发酵阶段氮浓度增加时的生物量生产。在氮限制的合成葡萄汁中,低氮需求(LND)菌株产生了更多的生物量,而当 YAN 浓度高于 100mg/L 时,高氮需求(HND)菌株则获得了更大的生物量产量。用两种菌株进行恒速发酵,以确定维持最高发酵速率所需的氮量。低氮需求和高氮需求菌株的基因组分析显示出杂合性和同源蛋白之间的氨基酸取代存在很大差异,氮回收系统基因显示出最广泛的氨基酸差异。使用 CRISPR/Cas9 介导的基因组修饰方法验证了 GCN1 在酵母菌株氮需求中的作用。然而,将低氮需求菌株的基因 GCN1 等位基因交换到高氮需求菌株中并没有显著影响发酵速率。