Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
G3 (Bethesda). 2024 Nov 6;14(11). doi: 10.1093/g3journal/jkae215.
In the yeast Saccharomyces cerevisiae, 2 types of trehalase activities have been described. Neutral trehalases (Nth1 and Nth2) are considered to be the main proteins that catalyze intracellular trehalose mobilization. In addition to Nth1 and Nth2, studies have shown that acid trehalase Ath1 is required for extracellular trehalose degradation. Although both neutral and acid-type trehalases have been predominantly investigated in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. In this study, we constructed mutants of the trehalose degradation pathway (NTH1, NTH2, and ATH1) in 5 diverse S. cerevisiae strains to examine whether published lab strain phenotypes are also exhibited by wild strains. For each mutant, we assessed a number of phenotypes for comparison to trehalose biosynthesis mutants, including trehalose production, glycogen production, cell size, acute thermotolerance, high-temperature growth, sporulation efficiency, and growth on a variety of carbon sources in rich and minimal medium. We found that all trehalase mutants including single deletion nth1Δ, nth2Δ, and ath1Δ, as well as double deletion nth1nth2Δ, accumulated higher intracellular trehalose levels compared to their isogenic wild-type cells. Also, nth1Δ and nth1Δnth2Δ mutants exhibited mild thermal sensitivity, suggesting a potential minor role for trehalose mobilization when cells recover from stress. In addition, we evaluated phenotypes more directly relevant to trehalose degradation, including both extracellular and intracellular trehalose utilization. We discovered that intracellular trehalose hydrolysis is critical for typical spore germination progression, highlighting a role for trehalose in cell cycle regulation, likely as a storage carbohydrate providing glycolytic fuel. Additionally, our work provides further evidence suggesting Ath1 is indispensable for extracellular trehalose utilization as a carbon source, even in the presence of AGT1.
在酵母酿酒酵母中,已经描述了 2 种海藻糖酶活性。中性海藻糖酶(Nth1 和 Nth2)被认为是催化细胞内海藻糖动员的主要蛋白质。除了 Nth1 和 Nth2,研究还表明酸性海藻糖酶 Ath1 是细胞外海藻糖降解所必需的。尽管中性和酸性型海藻糖酶在酿酒酵母的实验室菌株中得到了广泛研究,但我们试图研究在野生菌株中破坏这些基因的表型后果。在这项研究中,我们在 5 种不同的酿酒酵母菌株中构建了海藻糖降解途径的突变体(NTH1、NTH2 和 ATH1),以检验发表的实验室菌株表型是否也在野生菌株中表现出来。对于每个突变体,我们评估了许多表型,以便与海藻糖生物合成突变体进行比较,包括海藻糖产生、糖原产生、细胞大小、急性耐热性、高温生长、孢子形成效率以及在丰富和基础培养基中利用各种碳源的生长情况。我们发现,所有海藻糖酶突变体,包括单缺失 nth1Δ、nth2Δ 和 ath1Δ,以及双缺失 nth1nth2Δ,与它们的同基因野生型细胞相比,细胞内海藻糖水平更高。此外,nth1Δ 和 nth1Δnth2Δ 突变体表现出轻微的热敏感性,表明在细胞从应激中恢复时,海藻糖动员可能发挥次要作用。此外,我们评估了与海藻糖降解更直接相关的表型,包括细胞外和细胞内海藻糖的利用。我们发现,细胞内海藻糖水解对典型孢子萌发进程至关重要,这突出了海藻糖在细胞周期调控中的作用,可能作为一种储存碳水化合物为糖酵解提供燃料。此外,我们的工作进一步证明,即使存在 AGT1,Ath1 对于细胞外海藻糖作为碳源的利用也是不可或缺的。