Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France.
Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France.
J Cell Sci. 2021 Jan 25;134(2):jcs254599. doi: 10.1242/jcs.254599.
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
当被不同的跨膜受体激活时,相同的信号蛋白可以诱导不同的细胞反应。一种破译这种多功能信号活性机制的方法是直接操纵决策活动,支持在不同的细胞反应之间进行选择。我们开发了一种光遗传学探针(optoSRC)来控制 SRC 信号,这是一个多功能信号节点的例子,并证明了它能够在 SRC 激酶活性的不同时空控制下产生不同的细胞附着结构(片状伪足或侵入小体)。每个细胞附着结构的发生仅仅取决于粘着部位 optoSRC 纳米簇的动力学,这取决于蛋白质的 SH3 和独特结构域。由 optoSRC 动力学调节的不同决策事件诱导了不同的下游信号通路,我们使用时间分辨蛋白质组学和网络分析对其进行了表征。总的来说,通过操纵 SRC 激酶活性的分子迁移性,这些实验揭示了 SRC 信号的多功能性编码机制。