Suppr超能文献

基于基因组关联研究的半参数经验贝叶斯因子。

Semi-parametric empirical Bayes factor for genome-wide association studies.

机构信息

Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Department of Public Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.

出版信息

Eur J Hum Genet. 2021 May;29(5):800-807. doi: 10.1038/s41431-020-00800-x. Epub 2021 Jan 25.

Abstract

Bayes factor analysis has the attractive property of accommodating the risks of both false negatives and false positives when identifying susceptibility gene variants in genome-wide association studies (GWASs). For a particular SNP, the critical aspect of this analysis is that it incorporates the probability of obtaining the observed value of a statistic on disease association under the alternative hypotheses of non-null association. An approximate Bayes factor (ABF) was proposed by Wakefield (Genetic Epidemiology 2009;33:79-86) based on a normal prior for the underlying effect-size distribution. However, misspecification of the prior can lead to failure in incorporating the probability under the alternative hypothesis. In this paper, we propose a semi-parametric, empirical Bayes factor (SP-EBF) based on a nonparametric effect-size distribution estimated from the data. Analysis of several GWAS datasets revealed the presence of substantial numbers of SNPs with small effect sizes, and the SP-EBF attributed much greater significance to such SNPs than the ABF. Overall, the SP-EBF incorporates an effect-size distribution that is estimated from the data, and it has the potential to improve the accuracy of Bayes factor analysis in GWASs.

摘要

贝叶斯因子分析在全基因组关联研究(GWAS)中识别易感基因变异时有一个吸引人的特性,即它可以容纳假阴性和假阳性的风险。对于特定的 SNP,该分析的关键方面是,它结合了在替代假设下非零关联的情况下,统计量与疾病关联的观测值的概率。Wakefield(Genetic Epidemiology 2009;33:79-86)基于潜在效应大小分布的正态先验提出了近似贝叶斯因子(ABF)。然而,先验的错误指定可能导致无法在替代假设下纳入概率。在本文中,我们提出了一种基于从数据中估计的非参数效应大小分布的半参数、经验贝叶斯因子(SP-EBF)。对几个 GWAS 数据集的分析揭示了存在大量具有小效应大小的 SNP,SP-EBF 比 ABF 赋予这些 SNP 更大的意义。总体而言,SP-EBF 结合了从数据中估计的效应大小分布,并且有可能提高 GWAS 中贝叶斯因子分析的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/142b/8110551/29dd8a6815f1/41431_2020_800_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验