Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Department of Public Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
Eur J Hum Genet. 2021 May;29(5):800-807. doi: 10.1038/s41431-020-00800-x. Epub 2021 Jan 25.
Bayes factor analysis has the attractive property of accommodating the risks of both false negatives and false positives when identifying susceptibility gene variants in genome-wide association studies (GWASs). For a particular SNP, the critical aspect of this analysis is that it incorporates the probability of obtaining the observed value of a statistic on disease association under the alternative hypotheses of non-null association. An approximate Bayes factor (ABF) was proposed by Wakefield (Genetic Epidemiology 2009;33:79-86) based on a normal prior for the underlying effect-size distribution. However, misspecification of the prior can lead to failure in incorporating the probability under the alternative hypothesis. In this paper, we propose a semi-parametric, empirical Bayes factor (SP-EBF) based on a nonparametric effect-size distribution estimated from the data. Analysis of several GWAS datasets revealed the presence of substantial numbers of SNPs with small effect sizes, and the SP-EBF attributed much greater significance to such SNPs than the ABF. Overall, the SP-EBF incorporates an effect-size distribution that is estimated from the data, and it has the potential to improve the accuracy of Bayes factor analysis in GWASs.
贝叶斯因子分析在全基因组关联研究(GWAS)中识别易感基因变异时有一个吸引人的特性,即它可以容纳假阴性和假阳性的风险。对于特定的 SNP,该分析的关键方面是,它结合了在替代假设下非零关联的情况下,统计量与疾病关联的观测值的概率。Wakefield(Genetic Epidemiology 2009;33:79-86)基于潜在效应大小分布的正态先验提出了近似贝叶斯因子(ABF)。然而,先验的错误指定可能导致无法在替代假设下纳入概率。在本文中,我们提出了一种基于从数据中估计的非参数效应大小分布的半参数、经验贝叶斯因子(SP-EBF)。对几个 GWAS 数据集的分析揭示了存在大量具有小效应大小的 SNP,SP-EBF 比 ABF 赋予这些 SNP 更大的意义。总体而言,SP-EBF 结合了从数据中估计的效应大小分布,并且有可能提高 GWAS 中贝叶斯因子分析的准确性。