Suppr超能文献

利用多民族证据绘制少数族裔群体复杂性状图谱:一种经验贝叶斯方法。

Leveraging Multi-ethnic Evidence for Mapping Complex Traits in Minority Populations: An Empirical Bayes Approach.

作者信息

Coram Marc A, Candille Sophie I, Duan Qing, Chan Kei Hang K, Li Yun, Kooperberg Charles, Reiner Alex P, Tang Hua

机构信息

Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA.

出版信息

Am J Hum Genet. 2015 May 7;96(5):740-52. doi: 10.1016/j.ajhg.2015.03.008. Epub 2015 Apr 16.

Abstract

Elucidating the genetic basis of complex traits and diseases in non-European populations is particularly challenging because US minority populations have been under-represented in genetic association studies. We developed an empirical Bayes approach named XPEB (cross-population empirical Bayes), designed to improve the power for mapping complex-trait-associated loci in a minority population by exploiting information from genome-wide association studies (GWASs) from another ethnic population. Taking as input summary statistics from two GWASs-a target GWAS from an ethnic minority population of primary interest and an auxiliary base GWAS (such as a larger GWAS in Europeans)-our XPEB approach reprioritizes SNPs in the target population to compute local false-discovery rates. We demonstrated, through simulations, that whenever the base GWAS harbors relevant information, XPEB gains efficiency. Moreover, XPEB has the ability to discard irrelevant auxiliary information, providing a safeguard against inflated false-discovery rates due to genetic heterogeneity between populations. Applied to a blood-lipids study in African Americans, XPEB more than quadrupled the discoveries from the conventional approach, which used a target GWAS alone, bringing the number of significant loci from 14 to 65. Thus, XPEB offers a flexible framework for mapping complex traits in minority populations.

摘要

在非欧洲人群中阐明复杂性状和疾病的遗传基础尤其具有挑战性,因为美国少数族裔人群在基因关联研究中的代表性不足。我们开发了一种名为XPEB(跨人群经验贝叶斯)的经验贝叶斯方法,旨在通过利用来自另一个种族人群的全基因组关联研究(GWAS)信息,提高在少数族裔人群中定位复杂性状相关基因座的能力。以来自两个GWAS的汇总统计数据为输入——一个来自主要关注的少数族裔人群的目标GWAS和一个辅助基础GWAS(例如欧洲人中规模更大的GWAS)——我们的XPEB方法对目标人群中的单核苷酸多态性(SNP)重新进行优先级排序,以计算局部错误发现率。我们通过模拟证明,只要基础GWAS包含相关信息,XPEB就能提高效率。此外,XPEB有能力舍弃不相关的辅助信息,防止因人群间遗传异质性导致错误发现率虚高。应用于一项针对非裔美国人的血脂研究时,XPEB使仅使用目标GWAS的传统方法的发现数量增加了四倍多,将显著基因座的数量从14个增加到65个。因此,XPEB为在少数族裔人群中定位复杂性状提供了一个灵活的框架。

相似文献

4
Leveraging the local genetic structure for trans-ancestry association mapping.利用本地遗传结构进行跨种族关联映射。
Am J Hum Genet. 2022 Jul 7;109(7):1317-1337. doi: 10.1016/j.ajhg.2022.05.013. Epub 2022 Jun 16.
8
Trans-ethnic meta-analysis of white blood cell phenotypes.白细胞表型的跨种族荟萃分析。
Hum Mol Genet. 2014 Dec 20;23(25):6944-60. doi: 10.1093/hmg/ddu401. Epub 2014 Aug 5.

引用本文的文献

本文引用的文献

7
Discovery and refinement of loci associated with lipid levels.发现和完善与脂质水平相关的基因座。
Nat Genet. 2013 Nov;45(11):1274-1283. doi: 10.1038/ng.2797. Epub 2013 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验