Suppr超能文献

乙醇中脉冲激光熔化过程中热诱导纳米气泡内过渡金属氧化物颗粒的还原机制

Reduction Mechanism of Transition Metal Oxide Particles in Thermally Induced Nanobubbles during Pulsed Laser Melting in Ethanol.

作者信息

Suehara Kentaro, Takai Ryosuke, Ishikawa Yoshie, Koshizaki Naoto, Omura Kazunobu, Nagata Harunori, Yamauchi Yuji

机构信息

Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.

出版信息

Chemphyschem. 2021 Apr 7;22(7):675-683. doi: 10.1002/cphc.202001000. Epub 2021 Mar 1.

Abstract

Pulsed laser melting in liquid (PLML) is a technique to fabricate spherical submicrometer particles (SMPs) wherein nanosecond pulsed laser (several tens to several hundreds of mJ pulse cm ) irradiates raw particles dispersed in liquid. Raw particles are transiently heated above the melting point to form spherical particles, which enables pulsed heating of surrounding liquid to form thermally induced bubbles by liquid vaporization. These transient bubbles play an important role as a thermal barrier to rapidly heat the particle. Reduced SMPs are generated from raw metal-oxide nanoparticles by PLML process in ethanol. This reduction cannot be explained by high-temperature thermal decomposition, but by mediation of molecules decomposed from ethanol. Computational simulations of ethanol decomposition by pulsed heating for 100 ns at the temperature 1000-4000 K revealed that ethylene is generated as the main product. Gibbs free energies of oxide reduction reactions mediated by ethylene greatly decreased compared to those without ethylene mediation. This explanation can be applied to reductive SMP formation from various transition metal oxides by PLML.

摘要

液体中的脉冲激光熔化(PLML)是一种制造球形亚微米颗粒(SMPs)的技术,其中纳秒脉冲激光(每平方厘米脉冲能量几十到几百毫焦)照射分散在液体中的原始颗粒。原始颗粒被瞬间加热到熔点以上形成球形颗粒,这使得周围液体被脉冲加热,通过液体汽化形成热致气泡。这些瞬态气泡作为热障对快速加热颗粒起着重要作用。通过PLML工艺在乙醇中由原始金属氧化物纳米颗粒生成了还原态的SMPs。这种还原不能用高温热分解来解释,而是由乙醇分解产生的分子介导的。在1000 - 4000K温度下对乙醇进行100纳秒脉冲加热的分解计算模拟表明,乙烯是主要产物。与没有乙烯介导相比,由乙烯介导的氧化物还原反应的吉布斯自由能大大降低。这种解释可应用于通过PLML从各种过渡金属氧化物形成还原态SMPs的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验