Suppr超能文献

通过碳标记实验探索工业红霉素生产菌株中丙醇的代谢命运,并通过合理的代谢工程改造提高糖多孢红霉菌的红霉素产量。

Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea.

作者信息

Xu Feng, Ke Xiang, Hong Ming, Huang Mingzhi, Chen Chongchong, Tian Xiwei, Hang Haifeng, Chu Ju

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

出版信息

Biochem Biophys Res Commun. 2021 Jan 23;542:73-79. doi: 10.1016/j.bbrc.2021.01.024.

Abstract

Propanol had been widely used as a precursor for erythromycin synthesis in industrial production. However, the knowledge on the exact metabolic fate of propanol was still unclear. In the present study, the metabolic fate of propanol in industrial erythromycin-producing strain Saccharopolyspora erythraea E3 was explored via C labeling experiments. An unexpected pathway in which propanol was channeled into tricarboxylic acid cycle was uncovered, resulting in uneconomic catabolism of propanol. By deleting the sucC gene, which encodes succinyl-CoA synthetase that catalyse a reaction in the unexpected propanol utilization pathway, a novel strain E3-ΔsucC was constructed. The strain E3-ΔsucC showed a significant enhancement in erythromycin production in the chemically defined medium compared to E3 (786.61 vs 392.94 mg/L). Isotopically nonstationary C metabolic flux analysis were employed to characterize the metabolic differences between Saccharopolyspora erythraea E3 and E3-ΔsucC. The results showed that compared with the starting strain E3, the fluxes of pentose phosphate pathway in E3-△sucC increased by almost 200%. The flux of the metabolic reaction catalyzed by succinyl-CoA synthetase in E3-ΔsucC was almost zero, while the glyoxylate bypass flux significantly increased. These new insights into the precursor utilization of antibiotic biosynthesis by rational metabolic engineering in Saccharopolyspora erythraea provided the new vision in increasing industrial production of secondary metabolites.

摘要

丙醇在工业生产中已被广泛用作红霉素合成的前体。然而,关于丙醇确切的代谢命运仍不清楚。在本研究中,通过碳标记实验探索了丙醇在工业红霉素生产菌株糖多孢红霉菌E3中的代谢命运。发现了一条意外的途径,即丙醇进入三羧酸循环,导致丙醇的非经济性分解代谢。通过缺失编码琥珀酰辅酶A合成酶(该酶催化意外的丙醇利用途径中的一个反应)的sucC基因,构建了新菌株E3-ΔsucC。与E3相比,菌株E3-ΔsucC在化学限定培养基中的红霉素产量显著提高(786.61对392.94mg/L)。采用同位素非稳态碳代谢通量分析来表征糖多孢红霉菌E3和E3-ΔsucC之间的代谢差异。结果表明,与起始菌株E3相比,E3-△sucC中磷酸戊糖途径的通量增加了近200%。E3-ΔsucC中由琥珀酰辅酶A合成酶催化的代谢反应通量几乎为零,而乙醛酸旁路通量显著增加。这些通过合理代谢工程对糖多孢红霉菌抗生素生物合成前体利用的新见解为提高次级代谢产物的工业产量提供了新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验