Piątek Michał, Lisowski Aleksander, Dąbrowska Magdalena
Department of Biosystems Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
Materials (Basel). 2021 Jan 20;14(3):487. doi: 10.3390/ma14030487.
In this work, for modelling the anaerobic digestion of microcrystalline cellulose, two surface-related models based on cylindrical and spherical particles were developed and compared with the first-order kinetics model. A unique dataset consisting of particles with different sizes, the same crystallinity and polymerisation degree was used to validate the models. Both newly developed models outperformed the first-order kinetics model. Analysis of the kinetic constant data revealed that particle size is a key factor determining the anaerobic digestion kinetics of crystalline cellulose. Hence, crystalline cellulose particle size should be considered in the development and optimization of lignocellulose pre-treatment methods. Further research is necessary for the assessment of impact of the crystalline cellulose particle size and surface properties on the microbial cellulose hydrolysis rate.
在这项工作中,为了模拟微晶纤维素的厌氧消化过程,开发了基于圆柱形和球形颗粒的两种与表面相关的模型,并与一级动力学模型进行了比较。使用由具有不同尺寸、相同结晶度和聚合度的颗粒组成的独特数据集来验证模型。两个新开发的模型均优于一级动力学模型。对动力学常数数据的分析表明,颗粒大小是决定结晶纤维素厌氧消化动力学的关键因素。因此,在木质纤维素预处理方法的开发和优化中应考虑结晶纤维素颗粒大小。有必要进一步研究结晶纤维素颗粒大小和表面性质对微生物纤维素水解速率的影响。