Tomasino Alessandro, Piccoli Riccardo, Jestin Yoann, Le Drogoff Boris, Chaker Mohamed, Yurtsever Aycan, Busacca Alessandro, Razzari Luca, Morandotti Roberto
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada.
DEIM, University of Palermo, Edificio 9, Viale delle Science, 90128 Palermo, Italy.
Nanomaterials (Basel). 2021 Jan 22;11(2):283. doi: 10.3390/nano11020283.
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the static field overcomes the THz field strength, without the requirement of an additional demodulating circuit. Moreover, we introduce a differential configuration, which extends the applicability of the homodyne scheme to higher THz field strengths, also leading a two-fold improvement of the dynamic range compared to the heterodyne counterpart. Finally, we demonstrate that, by reversing the sign of the static voltage, it is possible to directly retrieve the absolute THz pulse polarity. The homodyne configuration makes the SSBCD technique of much easier access, leading to a vast range of field-resolved applications.
我们展示了固态偏置相干检测(SSBCD)技术的一种创新实现方式,该技术是我们最近为重建超宽带太赫兹脉冲的幅度和相位而引入的。在我们之前的工作中,SSBCD方法是通过外差方案运行的,这涉及到要求与太赫兹脉冲序列锁相的方波电压放大器,以及用于解调读出信号的电子电路。在这里,我们证明了SSBCD技术可以通过一种非常简单的零差方案运行,利用普通的静态偏置电压。我们表明,当静态场超过太赫兹场强时,零差SSBCD信号会变成双极瞬态,而无需额外的解调电路。此外,我们引入了一种差分配置,它将零差方案的适用性扩展到更高的太赫兹场强,与外差对应方案相比,动态范围也提高了两倍。最后,我们证明,通过反转静态电压的符号,可以直接获取太赫兹脉冲的绝对极性。零差配置使SSBCD技术更容易实现,从而带来了广泛的场分辨应用。