Suppr超能文献

应用基于机器学习的模型来提高 SPAN 指数的预测能力。

Application of machine learning-based models to boost the predictive power of the SPAN index.

机构信息

Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.

Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.

出版信息

Int J Neurosci. 2023 Jan;133(1):26-36. doi: 10.1080/00207454.2021.1881092. Epub 2021 Feb 3.

Abstract

BACKGROUND

This study re-explored the predictive validity of Stroke Prognostication using Age and National Institutes of Health Stroke Scale (SPAN) index in patients who received different treatments for acute ischemic stroke (AIS) and developed machine learning-boosted outcome prediction models.

METHODS

We evaluated the prognostic relevance of SPAN index in patients with AIS who received intravenous tissue-type plasminogen activator (IV-tPA), intra-arterial thrombolysis (IAT) or non-thrombolytic treatments (non-tPA), and applied machine learning algorithms to develop SPAN-based outcome prediction models in a cohort of 2145 hospitalized AIS patients. The performance of the models was assessed and compared using the area under the receiver operating characteristic curves (AUCs).

RESULTS

SPAN index ≥100 was associated with higher mortality rate and higher modified Rankin Scale at discharge in AIS patients who received the different treatments. Compared to the lower AUCs for the SPAN-alone model across all groups, the AUCs of the logistic regression-boosted model were 0.838, 0.857, 0.766 and 0.875 for the whole cohort, non-tPA, IV-tPA and IAT groups, respectively. Similarly, the AUCs of the generated artificial neural network were 0.846, 0.858, 0.785 and 0.859 for the whole cohort, non-tPA, IV-tPA and IAT groups, respectively, while for gradient boosting decision tree model, we computed 0.850, 0.863, 0.779 and 0.815.

CONCLUSIONS

SPAN index has prognostic relevance in patients with AIS who received different treatments. The generated machine learning-based models exhibit good performance for predicting the functional recovery of AIS; thus, their proposed clinical application to aid outcome prediction and decision-making for the patients with AIS.

摘要

背景

本研究重新探讨了使用年龄和美国国立卫生研究院卒中量表(SPAN)指数预测急性缺血性卒中(AIS)患者不同治疗方法预后的预测效度,并建立了机器学习增强的预后预测模型。

方法

我们评估了 SPAN 指数在接受静脉组织型纤溶酶原激活剂(IV-tPA)、动脉内溶栓(IAT)或非溶栓治疗(非 tPA)的 AIS 患者中的预后相关性,并在 2145 例住院 AIS 患者队列中应用机器学习算法建立基于 SPAN 的预后预测模型。使用受试者工作特征曲线下面积(AUCs)评估和比较模型的性能。

结果

在接受不同治疗的 AIS 患者中,SPAN 指数≥100 与死亡率较高和出院时改良 Rankin 量表评分较高相关。与所有组中 SPAN 单一模型的 AUC 较低相比,逻辑回归增强模型的 AUC 分别为 0.838、0.857、0.766 和 0.875,用于整个队列、非 tPA、IV-tPA 和 IAT 组。同样,生成的人工神经网络的 AUC 分别为 0.846、0.858、0.785 和 0.859,用于整个队列、非 tPA、IV-tPA 和 IAT 组,而对于梯度提升决策树模型,我们计算出 0.850、0.863、0.779 和 0.815。

结论

SPAN 指数与接受不同治疗的 AIS 患者的预后相关。基于机器学习的生成模型在预测 AIS 患者的功能恢复方面表现出良好的性能;因此,它们被提议用于辅助 AIS 患者的预后预测和决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验