Boenisch Franziska, Rosemann Benjamin, Wild Benjamin, Dormagen David, Wario Fernando, Landgraf Tim
Dahlem Center for Machine Learning and Robotics, FB Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany.
Front Robot AI. 2018 Apr 4;5:35. doi: 10.3389/frobt.2018.00035. eCollection 2018.
Computational approaches to the analysis of collective behavior in social insects increasingly rely on motion paths as an intermediate data layer from which one can infer individual behaviors or social interactions. Honey bees are a popular model for learning and memory. Previous experience has been shown to affect and modulate future social interactions. So far, no lifetime history observations have been reported for all bees of a colony. In a previous work we introduced a recording setup customized to track up to 4,000 marked bees over several weeks. Due to detection and decoding errors of the bee markers, linking the correct correspondences through time is non-trivial. In this contribution we present an in-depth description of the underlying multi-step algorithm which produces motion paths, and also improves the marker decoding accuracy significantly. The proposed solution employs two classifiers to predict the correspondence of two consecutive detections in the first step, and two tracklets in the second. We automatically tracked ~2,000 marked honey bees over 10 weeks with inexpensive recording hardware using markers without any error correction bits. We found that the proposed two-step tracking reduced incorrect ID decodings from initially ~13% to around 2% post-tracking. Alongside this paper, we publish the first trajectory dataset for all bees in a colony, extracted from ~3 million images covering 3 days. We invite researchers to join the collective scientific effort to investigate this intriguing animal system. All components of our system are open-source.
分析群居昆虫集体行为的计算方法越来越依赖运动路径作为中间数据层,从中可以推断个体行为或社会互动。蜜蜂是学习和记忆的常用模型。先前的经验已被证明会影响和调节未来的社会互动。到目前为止,尚未有关于一个蜂群中所有蜜蜂一生经历的观察报告。在之前的一项工作中,我们引入了一种定制的记录装置,可在数周内追踪多达4000只带标记的蜜蜂。由于蜜蜂标记的检测和解码错误,随着时间的推移建立正确的对应关系并非易事。在本论文中,我们深入描述了生成运动路径的底层多步骤算法,并且显著提高了标记解码的准确性。所提出的解决方案在第一步使用两个分类器来预测两个连续检测的对应关系,在第二步使用两个轨迹段。我们使用没有任何纠错位的标记,通过廉价的记录硬件在10周内自动追踪了约2000只带标记的蜜蜂。我们发现,所提出的两步追踪方法将错误的身份解码从最初的约13%降低到追踪后的约2%。与本文同时,我们发布了一个蜂群中所有蜜蜂的首个轨迹数据集,该数据集从涵盖3天的约300万张图像中提取。我们邀请研究人员加入这项集体科学努力,以研究这个有趣的动物系统。我们系统的所有组件都是开源的。