Suppr超能文献

使用时间序列分类的群体机器人多功能传感:以HoverBot为例。

Multi-Functional Sensing for Swarm Robots Using Time Sequence Classification: HoverBot, an Example.

作者信息

Nemitz Markus P, Marcotte Ryan J, Sayed Mohammed E, Ferrer Gonzalo, Hero Alfred O, Olson Edwin, Stokes Adam A

机构信息

School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Edinburgh, United Kingdom.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Robot AI. 2018 May 17;5:55. doi: 10.3389/frobt.2018.00055. eCollection 2018.

Abstract

Scaling up robot swarms to collectives of hundreds or even thousands without sacrificing sensing, processing, and locomotion capabilities is a challenging problem. Low-cost robots are potentially scalable, but the majority of existing systems have limited capabilities, and these limitations substantially constrain the type of experiments that could be performed by robotics researchers. Instead of adding functionality by adding more components and therefore increasing the cost, we demonstrate how low-cost hardware can be used beyond its standard functionality. We systematically review 15 swarm robotic systems and analyse their sensing capabilities by applying a general sensor model from the sensing and measurement community. This work is based on the HoverBot system. A HoverBot is a levitating circuit board that manoeuvres by pulling itself towards magnetic anchors that are embedded into the robot arena. We show that HoverBot's magnetic field readouts from its Hall-effect sensor can be associated to successful movement, robot rotation and collision measurands. We build a time series classifier based on these magnetic field readouts. We modify and apply signal processing techniques to enable the online classification of the time-variant magnetic field measurements on HoverBot's low-cost microcontroller. We enabled HoverBot with successful movement, rotation, and collision sensing capabilities by utilising its single Hall-effect sensor. We discuss how our classification method could be applied to other sensors to increase a robot's functionality while retaining its cost.

摘要

在不牺牲传感、处理和移动能力的情况下,将机器人集群扩展到数百甚至数千个的集体是一个具有挑战性的问题。低成本机器人具有潜在的可扩展性,但大多数现有系统的能力有限,这些限制极大地制约了机器人研究人员能够进行的实验类型。我们展示了如何在不增加更多组件从而不增加成本的情况下,利用低成本硬件的标准功能之外的功能,而不是通过添加更多组件来增加功能。我们系统地回顾了15个群体机器人系统,并通过应用传感与测量领域的通用传感器模型来分析它们的传感能力。这项工作基于HoverBot系统。HoverBot是一个悬浮的电路板,它通过向嵌入机器人竞技场的磁性锚点拉动自身来进行操纵。我们表明,HoverBot霍尔效应传感器的磁场读数可以与成功移动、机器人旋转和碰撞测量值相关联。我们基于这些磁场读数构建了一个时间序列分类器。我们修改并应用信号处理技术,以便在HoverBot的低成本微控制器上对随时间变化的磁场测量进行在线分类。通过利用其单个霍尔效应传感器,我们使HoverBot具备了成功的移动、旋转和碰撞传感能力。我们讨论了我们的分类方法如何应用于其他传感器,以增加机器人的功能同时保持其成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验