Suppr超能文献

设计微型、可扩展的受昆虫启发的多运动微型机器人。

Designing minimal and scalable insect-inspired multi-locomotion millirobots.

机构信息

Reconfigurable Robotics Laboratory, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.

Adaptive Robotics Laboratory, Osaka University, Osaka, Japan.

出版信息

Nature. 2019 Jul;571(7765):381-386. doi: 10.1038/s41586-019-1388-8. Epub 2019 Jul 10.

Abstract

In ant colonies, collectivity enables division of labour and resources with great scalability. Beyond their intricate social behaviours, individuals of the genus Odontomachus, also known as trap-jaw ants, have developed remarkable multi-locomotion mechanisms to 'escape-jump' upwards when threatened, using the sudden snapping of their mandibles, and to negotiate obstacles by leaping forwards using their legs. Emulating such diverse insect biomechanics and studying collective behaviours in a variety of environments may lead to the development of multi-locomotion robotic collectives deployable in situations such as emergency relief, exploration and monitoring; however, reproducing these abilities in small-scale robotic systems with simple design and scalability remains a key challenge. Existing robotic collectives are confined to two-dimensional surfaces owing to limited locomotion, and individual multi-locomotion robots are difficult to scale up to large groups owing to the increased complexity, size and cost of hardware designs, which hinder mass production. Here we demonstrate an autonomous multi-locomotion insect-scale robot (millirobot) inspired by trap-jaw ants that addresses the design and scalability challenges of small-scale terrestrial robots. The robot's compact locomotion mechanism is constructed with minimal components and assembly steps, has tunable power requirements, and realizes five distinct gaits: vertical jumping for height, horizontal jumping for distance, somersault jumping to clear obstacles, walking on textured terrain and crawling on flat surfaces. The untethered, battery-powered millirobot can selectively switch gaits to traverse diverse terrain types, and groups of millirobots can operate collectively to manipulate objects and overcome obstacles. We constructed the ten-gram palm-sized prototype-the smallest and lightest self-contained multi-locomotion robot reported so far-by folding a quasi-two-dimensional metamaterial sandwich formed of easily integrated mechanical, material and electronic layers, which will enable assembly-free mass-manufacturing of robots with high task efficiency, flexibility and disposability.

摘要

在蚁群中,集体协作使分工和资源分配具有巨大的可扩展性。除了复杂的社会行为之外,属 Odontomachus 的个体,也被称为颚蚁,还发展出了非凡的多运动机制,当受到威胁时,它们可以利用下颚的突然咬合“向上跳跃”,并用腿部向前跳跃来越过障碍物。模仿这些多样化的昆虫生物力学,并在各种环境中研究集体行为,可能会导致多运动机器人集体的发展,这些机器人可以在紧急救援、探索和监测等情况下部署;然而,在具有简单设计和可扩展性的小规模机器人系统中复制这些能力仍然是一个关键挑战。现有的机器人集体由于运动能力有限,只能在二维表面上活动,而个体多运动机器人由于硬件设计的复杂性、尺寸和成本增加,难以扩展到大型群体,这阻碍了大规模生产。在这里,我们展示了一种受颚蚁启发的自主多运动昆虫级机器人(毫机器人),该机器人解决了小规模地面机器人的设计和可扩展性挑战。机器人的紧凑运动机制由最少的组件和装配步骤构成,具有可调的功率要求,并实现了五种不同的步态:垂直跳跃以获得高度,水平跳跃以获得距离,翻滚跳跃以清除障碍物,在纹理地面上行走和在平坦表面上爬行。这种无绳、电池供电的毫机器人可以选择性地切换步态,以穿越不同类型的地形,并且成群的毫机器人可以集体操作,以操纵物体和克服障碍物。我们构建了这个十克重的手掌大小的原型——迄今为止报道的最小、最轻的独立多运动机器人——通过折叠一个由易于集成的机械、材料和电子层形成的准二维超材料三明治,这将使具有高效率、灵活性和可处置性的机器人的无组装大规模制造成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验