Suppr超能文献

用于e.脱轨碎片清除任务的机器人子系统的设计与操作要素

Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission.

作者信息

Jaekel Steffen, Lampariello Roberto, Rackl Wolfgang, De Stefano Marco, Oumer Nassir, Giordano Alessandro M, Porges Oliver, Pietras Markus, Brunner Bernhard, Ratti John, Muehlbauer Quirin, Thiel Markus, Estable Stephane, Biesbroek Robin, Albu-Schaeffer Alin

机构信息

German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Wessling, Germany.

Department of Informatics, Technical University of Munich, Garching, Germany.

出版信息

Front Robot AI. 2018 Aug 31;5:100. doi: 10.3389/frobt.2018.00100. eCollection 2018.

Abstract

This paper presents a robotic capture concept that was developed as part of the e.deorbit study by ESA. The defective and tumbling satellite ENVISAT was chosen as a potential target to be captured, stabilized, and subsequently de-orbited in a controlled manner. A robotic capture concept was developed that is based on a chaser satellite equipped with a seven degrees-of-freedom dexterous robotic manipulator, holding a dedicated linear two-bracket gripper. The satellite is also equipped with a clamping mechanism for achieving a stiff fixation with the grasped target, following their combined satellite-stack de-tumbling and prior to the execution of the de-orbit maneuver. Driving elements of the robotic design, operations and control are described and analyzed. These include pre and post-capture operations, the task-specific kinematics of the manipulator, the intrinsic mechanical arm flexibility and its effect on the arm's positioning accuracy, visual tracking, as well as the interaction between the manipulator controller and that of the chaser satellite. The kinematics analysis yielded robust reachability of the grasp point. The effects of intrinsic arm flexibility turned out to be noticeable but also effectively scalable through robot joint speed adaption throughout the maneuvers. During most of the critical robot arm operations, the internal robot joint torques are shown to be within the design limits. These limits are only reached for a limiting scenario of tumbling motion of ENVISAT, consisting of an initial pure spin of 5 deg/s about its unstable intermediate axis of inertia. The computer vision performance was found to be satisfactory with respect to positioning accuracy requirements. Further developments are necessary and are being pursued to meet the stringent mission-related robustness requirements. Overall, the analyses conducted in this study showed that the capture and de-orbiting of ENVISAT using the proposed robotic concept is feasible with respect to relevant mission requirements and for most of the operational scenarios considered. Future work aims at developing a combined chaser-robot system controller. This will include a visual servo to minimize the positioning errors during the contact phases of the mission (grasping and clamping). Further validation of the visual tracking in orbital lighting conditions will be pursued.

摘要

本文介绍了一种机器人捕获概念,该概念是作为欧洲航天局(ESA)的e.deorbit研究的一部分而开发的。有缺陷且翻滚的卫星“环境卫星”(ENVISAT)被选为潜在的捕获目标,对其进行捕获、稳定,随后以可控方式使其脱离轨道。开发了一种机器人捕获概念,该概念基于一颗追逐卫星,该卫星配备了一个七自由度的灵巧机器人操纵器,并持有一个专用的线性双托架夹具。该卫星还配备了一种夹紧机构,以便在组合的卫星堆栈停止翻滚之后且在执行脱轨机动之前,与被抓取的目标实现牢固固定。描述并分析了机器人设计、操作和控制的驱动要素。这些要素包括捕获前后的操作、操纵器的特定任务运动学、机械臂的固有灵活性及其对臂定位精度的影响、视觉跟踪,以及操纵器控制器与追逐卫星控制器之间的相互作用。运动学分析得出了抓取点的可靠可达性。结果表明,固有臂灵活性的影响是显著的,但也可以通过在整个机动过程中调整机器人关节速度有效地进行缩放。在大多数关键的机器人手臂操作过程中,内部机器人关节扭矩显示在设计极限范围内。只有在ENVISAT翻滚运动的极限情况下,即围绕其不稳定的中间惯性轴以5度/秒的初始纯自旋,才会达到这些极限。就定位精度要求而言,计算机视觉性能令人满意。为满足与任务相关的严格鲁棒性要求,还需要进一步发展并正在进行相关研究。总体而言,本研究进行的分析表明,使用所提出的机器人概念捕获和使ENVISAT脱轨,对于相关任务要求以及所考虑的大多数操作场景而言是可行的。未来的工作旨在开发一种组合的追逐器-机器人系统控制器。这将包括一个视觉伺服系统,以在任务的接触阶段(抓取和夹紧)将定位误差降至最低。还将进一步验证轨道照明条件下的视觉跟踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/7805711/02bb76973b97/frobt-05-00100-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验