Suppr超能文献

用于近距离人机交互的机器人运动策略的适应与转移

Adaptation and Transfer of Robot Motion Policies for Close Proximity Human-Robot Interaction.

作者信息

Hoang Dinh Khoi, Oguz Ozgur S, Elsayed Mariam, Wollherr Dirk

机构信息

Chair of Automatic Control Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.

出版信息

Front Robot AI. 2019 Jul 31;6:69. doi: 10.3389/frobt.2019.00069. eCollection 2019.

Abstract

In the context of human-robot collaboration in close proximity, safety and comfort are the two important aspects to achieve joint tasks efficiently. For safety, the robot must be able to avoid dynamic obstacles such as a human arm with high reliability. For comfort, the trajectories and avoidance behavior of the robot need to be predictable to the humans. Moreover, these two aspects might be different from person to person or from one task to another. This work presents a framework to generate predictable motions with dynamic obstacle avoidance for the robot interacting with the human by using policy improvement method. The trajectories are generated using Dynamic Motion Primitives with an additional potential field term that penalizes trajectories that may lead to collisions with obstacles. Furthermore, human movements are predicted using a data-driven approach for proactive avoidance. A cost function is defined which measures different aspects that affect the comfort and predictability of human co-workers (e.g., human response time, joint jerk). This cost function is then minimized during human-robot interaction by the means of policy improvement through black-box optimization to generate robot trajectories that adapt to human preferences and avoid obstacles. User studies are performed to evaluate the trust and comfort of human co-workers when working with the robot. In addition, the studies are also extended to various scenarios and different users to analyze the task transferability. This improves the learning performance when switching to a new task or the robot has to adapt to a different co-worker.

摘要

在近距离人机协作的背景下,安全与舒适是高效完成联合任务的两个重要方面。为了确保安全,机器人必须能够以高可靠性避开动态障碍物,比如人的手臂。为了实现舒适感,机器人的轨迹和避障行为需要对人类来说具有可预测性。此外,这两个方面可能因人而异,或者因任务而异。这项工作提出了一个框架,通过策略改进方法为与人类交互的机器人生成具有动态避障功能的可预测运动。轨迹是使用动态运动基元生成的,并附加了一个势场项,该项会对可能导致与障碍物碰撞的轨迹进行惩罚。此外,使用数据驱动的方法预测人类运动以实现主动避障。定义了一个成本函数,该函数衡量影响人类同事舒适度和可预测性的不同方面(例如,人类反应时间、关节急动度)。然后,在人机交互过程中,通过黑箱优化进行策略改进,使该成本函数最小化,以生成适应人类偏好并避开障碍物的机器人轨迹。进行用户研究以评估人类同事与机器人协作时的信任度和舒适度。此外,研究还扩展到各种场景和不同用户,以分析任务的可转移性。这在切换到新任务或机器人必须适应不同同事时提高了学习性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cee0/7806113/631c8be6ec73/frobt-06-00069-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验