Suppr超能文献

基于自组织神经架构的人类活动组合学习

Compositional Learning of Human Activities With a Self-Organizing Neural Architecture.

作者信息

Mici Luiza, Parisi German I, Wermter Stefan

机构信息

Department of Informatics, Knowledge Technology, University of Hamburg, Hamburg, Germany.

出版信息

Front Robot AI. 2019 Aug 27;6:72. doi: 10.3389/frobt.2019.00072. eCollection 2019.

Abstract

An important step for assistive systems and robot companions operating in human environments is to learn the compositionality of human activities, i.e., recognize both activities and their comprising actions. Most existing approaches address action and activity recognition as separate tasks, i.e., actions need to be inferred before the activity labels, and are thus highly sensitive to the correct temporal segmentation of the activity sequences. In this paper, we present a novel learning approach that jointly learns human activities on two levels of semantic and temporal complexity: (1) transitive actions such as and , e.g., a cereal box, and (2) high-level activities such as . Our model consists of a hierarchy of GWR networks which process and learn inherent spatiotemporal dependencies of multiple visual cues extracted from the human body skeletal representation and the interaction with objects. The neural architecture learns and semantically segments input RGB-D sequences of high-level activities into their composing actions, without supervision. We investigate the performance of our architecture with a set of experiments on a publicly available benchmark dataset. The experimental results show that our approach outperforms the state of the art with respect to the classification of the high-level activities. Additionally, we introduce a novel top-down modulation mechanism to the architecture which uses the actions and activity labels as constraints during the learning phase. In our experiments, we show how this mechanism can be used to control the network's neural growth without decreasing the overall performance.

摘要

在人类环境中运行的辅助系统和机器人伙伴的一个重要步骤是学习人类活动的组成性,即识别活动及其组成动作。大多数现有方法将动作和活动识别视为单独的任务,也就是说,在活动标签之前需要推断动作,因此对活动序列的正确时间分割高度敏感。在本文中,我们提出了一种新颖的学习方法,该方法在语义和时间复杂性的两个层面上联合学习人类活动:(1)传递动作,如 和 ,例如一个麦片盒,以及(2)高级活动,如 。我们的模型由一个GWR网络层次结构组成,该层次结构处理并学习从人体骨骼表示和与物体的交互中提取的多个视觉线索的固有时空依赖性。该神经架构在无监督的情况下学习并将高级活动的输入RGB-D序列语义分割为其组成动作。我们在一个公开可用的基准数据集上进行了一组实验来研究我们架构的性能。实验结果表明,我们的方法在高级活动分类方面优于现有技术。此外,我们向该架构引入了一种新颖的自上而下调制机制,该机制在学习阶段将动作和活动标签用作约束。在我们的实验中,我们展示了这种机制如何用于控制网络的神经生长而不降低整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24a/7805845/6b98cf726e2b/frobt-06-00072-g0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验