Soffiatti Patricia, Rowe Nick P
Department of Botany, Federal University of Parana State (UFPR), Curitiba, Brazil.
AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
Front Robot AI. 2020 Jun 9;7:64. doi: 10.3389/frobt.2020.00064. eCollection 2020.
Climbing plants are being increasingly viewed as models for bioinspired growing robots capable of spanning voids and attaching to diverse substrates. We explore the functional traits of the climbing cactus (Cactaceae) from the Atlantic forest of Brazil and discuss the potential of these traits for robotics applications. The plant is capable of growing through highly unstructured habitats and attaching to variable substrates including soil, leaf litter, tree surfaces, rocks, and fine branches of tree canopies in wind-blown conditions. Stems develop highly variable cross-sectional geometries at different stages of growth. They include cylindrical basal stems, triangular climbing stems and apical star-shaped stems searching for supports. Searcher stems develop relatively rigid properties for a given cross-sectional area and are capable of spanning voids of up to 1 m. Optimization of rigidity in searcher stems provide some potential design ideas for additive engineering technologies where climbing robotic artifacts must limit materials and mass for curbing bending moments and buckling while climbing and searching. A two-step attachment mechanism involves deployment of recurved, multi-angled spines that grapple on to wide ranging surfaces holding the stem in place for more solid attachment via root growth from the stem. The cactus is an instructive example of how light mass searchers with a winged profile and two step attachment strategies can facilitate traversing voids and making reliable attachment to a wide range of supports and surfaces.
攀缘植物越来越被视为受生物启发的生长机器人的模型,这类机器人能够跨越空隙并附着在各种基质上。我们探索了来自巴西大西洋森林的攀缘仙人掌(仙人掌科)的功能特性,并讨论了这些特性在机器人应用中的潜力。这种植物能够在高度无结构的栖息地中生长,并附着在各种基质上,包括土壤、落叶、树木表面、岩石以及在风吹条件下树冠的细树枝。茎在不同生长阶段呈现出高度可变的横截面几何形状。它们包括圆柱形的基部茎、三角形的攀缘茎和顶端呈星形的寻找支撑的茎。对于给定的横截面积,寻找支撑的茎具有相对刚性的特性,并且能够跨越高达1米的空隙。寻找支撑的茎的刚性优化为增材制造技术提供了一些潜在的设计思路,在这种技术中,攀爬机器人部件在攀爬和寻找时必须限制材料和质量,以抑制弯矩和屈曲。一种两步附着机制包括展开向后弯曲、多角度的刺,这些刺抓住各种表面,通过茎部的根系生长将茎固定在适当位置,实现更稳固的附着。这种仙人掌是一个具有启发性的例子,展示了具有翼状外形的轻质寻找支撑结构和两步附着策略如何有助于跨越空隙并可靠地附着在各种支撑物和表面上。