Suppr超能文献

基于力传感和有限元建模的可变形物体盲操作

Blind Manipulation of Deformable Objects Based on Force Sensing and Finite Element Modeling.

作者信息

Sanchez Jose, Mohy El Dine Kamal, Corrales Juan Antonio, Bouzgarrou Belhassen-Chedli, Mezouar Youcef

机构信息

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France.

出版信息

Front Robot AI. 2020 Jun 9;7:73. doi: 10.3389/frobt.2020.00073. eCollection 2020.

Abstract

In this paper, we present a novel pipeline to simultaneously estimate and manipulate the deformation of an object using only force sensing and an FEM model. The pipeline is composed of a sensor model, a deformation model and a pose controller. The sensor model computes the contact forces that are used as input to the deformation model which updates the volumetric mesh of a manipulated object. The controller then deforms the object such that a given pose on the mesh reaches a desired pose. The proposed approach is thoroughly evaluated in real experiments using a robot manipulator and a force-torque sensor to show its accuracy in estimating and manipulating deformations without the use of vision sensors.

摘要

在本文中,我们提出了一种新颖的流程,仅使用力传感和有限元模型来同时估计和操纵物体的变形。该流程由传感器模型、变形模型和位姿控制器组成。传感器模型计算用作变形模型输入的接触力,变形模型更新被操纵物体的体网格。然后,控制器使物体变形,以使网格上的给定位姿达到期望位姿。使用机器人操纵器和力扭矩传感器在实际实验中对所提出的方法进行了全面评估,以展示其在不使用视觉传感器的情况下估计和操纵变形的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/7805691/f9d44a336e3b/frobt-07-00073-g0001.jpg

相似文献

引用本文的文献

本文引用的文献

1
Soft object deformation monitoring and learning for model-based robotic hand manipulation.用于基于模型的机器人手部操作的软物体变形监测与学习
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):740-53. doi: 10.1109/TSMCB.2011.2176115. Epub 2011 Dec 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验