Suppr超能文献

运用多种分解方法和聚类分析在运动想象脑机接口实验中寻找并分类脑电图活动的典型模式。

Using Multiple Decomposition Methods and Cluster Analysis to Find and Categorize Typical Patterns of EEG Activity in Motor Imagery Brain-Computer Interface Experiments.

作者信息

Frolov Alexander, Bobrov Pavel, Biryukova Elena, Isaev Mikhail, Kerechanin Yaroslav, Bobrov Dmitry, Lekin Alexander

机构信息

Research Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia.

出版信息

Front Robot AI. 2020 Jul 30;7:88. doi: 10.3389/frobt.2020.00088. eCollection 2020.

Abstract

In this study, the sources of EEG activity in motor imagery brain-computer interface (BCI) control experiments were investigated. Sixteen linear decomposition methods for EEG source separation were compared according to different criteria. The criteria were mutual information reduction between the source activities and physiological plausibility. The latter was tested by estimating the dipolarity of the source topographic maps, i.e., the accuracy of approximating the map by potential distribution from a single current dipole, as well as by the specificity of the source activity for different motor imagery tasks. The decomposition methods were also compared according to the number of shared components found. The results indicate that most of the dipolar components are found by the Independent Component Analysis Methods AMICA and PWCICA, which also provided the highest information reduction. These two methods also found the most task-specific EEG patterns of the blind source separation algorithms used. They are outperformed only by non-blind Common Spatial Pattern methods in terms of pattern specificity. The components found by all of the methods were clustered using the Attractor Neural Network with Increasing Activity. The results of the cluster analysis revealed the most frequent patterns of electrical activity occurring in the experiments. The patterns reflect blinking, eye movements, sensorimotor rhythm suppression during the motor imagery, and activations in the precuneus, supplementary motor area, and premotor areas of both hemispheres. Overall, multi-method decomposition with subsequent clustering and task-specificity estimation is a viable and informative procedure for processing the recordings of electrophysiological experiments.

摘要

在本研究中,对运动想象脑机接口(BCI)控制实验中脑电图(EEG)活动的来源进行了研究。根据不同标准比较了16种用于EEG源分离的线性分解方法。这些标准是源活动之间的互信息减少以及生理合理性。通过估计源地形图的偶极性,即通过单个电流偶极的电位分布来近似地图的准确性,以及通过不同运动想象任务的源活动的特异性来测试后者。还根据发现的共享成分数量对分解方法进行了比较。结果表明,大多数偶极成分是通过独立成分分析方法AMICA和PWCICA找到的,这两种方法也提供了最高的信息减少。这两种方法还发现了所使用的盲源分离算法中最具任务特异性的EEG模式。就模式特异性而言,只有非盲公共空间模式方法优于它们。使用具有增加活动的吸引子神经网络对所有方法找到的成分进行聚类。聚类分析结果揭示了实验中最常见的电活动模式。这些模式反映了眨眼、眼球运动、运动想象期间的感觉运动节律抑制,以及双侧半球楔前叶、辅助运动区和运动前区的激活。总体而言,多方法分解以及随后的聚类和任务特异性估计是处理电生理实验记录的一种可行且信息丰富的程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e67a/7805631/a95e7ef4766a/frobt-07-00088-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验