Suppr超能文献

独立的脑电源是双极的。

Independent EEG sources are dipolar.

机构信息

Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS One. 2012;7(2):e30135. doi: 10.1371/journal.pone.0030135. Epub 2012 Feb 15.

Abstract

Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison).

摘要

独立成分分析(ICA)和盲源分离(BSS)方法越来越多地用于分离脑电图(EEG)和其他电生理记录中由容积传导混合的单个脑和非脑源信号。我们比较了 22 种 ICA 和 BSS 算法对 13 个 71 通道人类头皮 EEG 数据集的分解结果,评估头皮通道对之间的成对互信息(PMI)、分量对之间的剩余 PMI、每个分解产生的总体互信息减少(MIR)以及分解的“偶极子性”,定义为与给定残留方差以下的单个等效偶极子投影匹配的分量头皮图的数量。表现最差的算法是主成分分析(PCA);表现最好的是 AMICA 和其他基于似然/互信息的 ICA 方法。尽管这些和其他常用的分解方法返回了许多相似的分量,但在 18 种 ICA/BSS 算法中,平均偶极子性与 MIR 呈线性关系,与剩余分量时间序列之间的 PMI 呈线性关系,这一结果与许多最大独立 EEG 分量被解释为单个紧凑皮质区域内部分同步局部皮质场活动的容积传导投影兼容。为了鼓励进一步的方法比较,我们已经提供了用于准备结果的数据和软件(http://sccn.ucsd.edu/wiki/BSSComparison)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdec/3280242/3ca45116aaa2/pone.0030135.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验