Suppr超能文献

多功能群体中自动行为生成的框架

A Framework for Automatic Behavior Generation in Multi-Function Swarms.

作者信息

Engebraaten Sondre A, Moen Jonas, Yakimenko Oleg A, Glette Kyrre

机构信息

Department of Informatics, University of Oslo, Oslo, Norway.

Norwegian Defence Research Establishment, Oslo, Norway.

出版信息

Front Robot AI. 2020 Dec 14;7:579403. doi: 10.3389/frobt.2020.579403. eCollection 2020.

Abstract

Multi-function swarms are swarms that solve multiple tasks at once. For example, a quadcopter swarm could be tasked with exploring an area of interest while simultaneously functioning as relays. With this type of multi-function comes the challenge of handling potentially conflicting requirements simultaneously. Using the Quality-Diversity algorithm MAP-elites in combination with a suitable controller structure, a framework for automatic behavior generation in multi-function swarms is proposed. The framework is tested on a scenario with three simultaneous tasks: exploration, communication network creation and geolocation of Radio Frequency (RF) emitters. A repertoire is evolved, consisting of a wide range of controllers, or behavior primitives, with different characteristics and trade-offs in the different tasks. This repertoire enables the swarm to online transition between behaviors featuring different trade-offs of applications depending on the situational requirements. Furthermore, the effect of noise on the behavior characteristics in MAP-elites is investigated. A moderate number of re-evaluations is found to increase the robustness while keeping the computational requirements relatively low. A few selected controllers are examined, and the dynamics of transitioning between these controllers are explored. Finally, the study investigates the importance of individual sensor or controller inputs. This is done through ablation, where individual inputs are disabled and their impact on the performance of the swarm controllers is assessed and analyzed.

摘要

多功能群体是指能够同时解决多项任务的群体。例如,一个四旋翼无人机群体可以被赋予探索感兴趣区域的任务,同时还能充当中继器。这种多功能带来了同时处理潜在冲突需求的挑战。结合质量多样性算法MAP-elites和合适的控制器结构,提出了一种用于多功能群体自动行为生成的框架。该框架在一个具有三个同时进行任务的场景中进行了测试:探索、通信网络创建和射频(RF)发射器的地理定位。演化出了一个包含各种控制器或行为原语的库,这些控制器或行为原语在不同任务中具有不同的特性和权衡。这个库使群体能够根据情境需求在具有不同应用权衡的行为之间进行在线转换。此外,还研究了噪声对MAP-elites中行为特征的影响。发现适度数量的重新评估可以提高鲁棒性,同时保持计算需求相对较低。研究了一些选定的控制器,并探讨了这些控制器之间转换的动态过程。最后,该研究调查了单个传感器或控制器输入的重要性。这是通过消融来完成的,即禁用单个输入,并评估和分析它们对群体控制器性能的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1a/7806103/53248b388b3e/frobt-07-579403-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验