Suppr超能文献

液晶聚合物:塑造神经界面的机会。

Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces.

机构信息

Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.

Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.

出版信息

Neuromodulation. 2022 Dec;25(8):1259-1267. doi: 10.1111/ner.13364. Epub 2022 Feb 15.

Abstract

OBJECTIVES

Polymers have emerged as constituent materials for the creation of microscale neural interfaces; however, limitations regarding water permeability, delamination, and material degradation impact polymeric device robustness. Liquid crystal polymers (LCPs) have molecular order like a solid but with the fluidity of a liquid, resulting in a unique material, with properties including low water permeability, chemical inertness, and mechanical toughness. The objective of this article is to review the state-of-the-art regarding the use of LCPs in neural interface applications and discuss challenges and opportunities where this class of materials can advance the field of neural interfaces.

MATERIALS AND METHODS

This review article focuses on studies that leverage LCP materials to interface with the nervous system in vivo. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar.

RESULTS

There have been recent efforts to create neural interfaces that leverage the material advantages of LCPs. The literature offers examples of LCP as a basis for implantable medical devices and neural interfaces in the form of planar electrode arrays for retinal prosthetic, electrocorticography applications, and cuff-like structures for interfacing the peripheral nerve. In addition, there have been efforts to create penetrating intracortical devices capable of microstimulation and resolution of biopotentials. Recent work with a subclass of LCPs, namely liquid crystal elastomers, demonstrates that it is possible to create devices with features that deploy away from a central implantation site to interface with a volume of tissue while offering the possibility of minimizing tissue damage.

CONCLUSION

We envision the creation of novel microscale neural interfaces that leverage the physical properties of LCPs and have the capability of deploying within neural tissue for enhanced integration and performance.

摘要

目的

聚合物已成为微尺度神经接口制造的组成材料;然而,水渗透性、分层和材料降解等限制因素影响了聚合物器件的坚固性。液晶聚合物(LCP)具有类似于固体的分子有序性,但具有液体的流动性,从而形成一种独特的材料,具有低水渗透性、化学惰性和机械韧性等特性。本文的目的是综述 LCP 在神经接口应用中的最新研究进展,并讨论该类材料在推进神经接口领域方面的挑战和机遇。

材料与方法

本综述文章重点介绍了利用 LCP 材料与体内神经系统接口的研究。通过 PubMed、Web of Science(Clarivate Analytics)和 Google Scholar 进行了全面的文献检索。

结果

最近已经有努力利用 LCP 的材料优势来创建神经接口。文献中提供了 LCP 作为植入式医疗设备和神经接口基础的示例,形式为视网膜假体的平面电极阵列、脑皮层电图应用的电刺激器和用于与周围神经接口的袖套结构。此外,还有一些努力用于创建能够进行微刺激和生物电位解析的穿透性皮质内器件。最近使用一类称为液晶弹性体的 LCP 的工作表明,有可能创建具有远离中央植入部位部署功能的器件,以与组织体积接口,同时有可能最大限度地减少组织损伤。

结论

我们设想创建新型微尺度神经接口,利用 LCP 的物理特性,并具有在神经组织内部署的能力,以增强集成和性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验