Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium.
Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
Glia. 2021 Jun;69(6):1444-1463. doi: 10.1002/glia.23972. Epub 2021 Jan 27.
Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.
神经退行性疾病的特征是进行性神经元丧失,最终导致成年哺乳动物中枢神经系统(CNS)的功能障碍。重要的是,由于这些 CNS 神经元的再生潜力非常有限,这些恶化是不可逆转的。最近提出的刺激和重新引导神经炎症是诱导轴突再生的重要方法,但炎症过程和 CNS 修复如何相互交织仍然难以捉摸。为了更深入地了解这些相互作用,我们研究了免疫调节如何影响自发再生斑马鱼视神经挤压(ONC)后的再生结果。首先,使用酵母聚糖诱导眼内炎症会引起急性炎症反应,其特征是固有血液来源的免疫细胞浸润和增殖增加、Müller 胶质细胞重新激活以及视网膜细胞因子表达改变。引人注目的是,炎症刺激也加速了视神经损伤后的轴突再生。其次,我们通过使用 CSF1R 抑制剂 PLX3397 和氯膦酸盐脂质体对视网膜中的小胶质细胞和巨噬细胞进行药理学耗竭,证明了急性耗竭这两种细胞会损害视神经再生。此外,我们观察到缺乏 CSF1RA/B 双突变的鱼,其在视网膜和大脑中都缺乏小胶质细胞,在 ONC 后表现出 RGC 轴突的快速再生,这伴随着不寻常的 Müller 胶质细胞增生性神经胶质增生。总的来说,我们的研究结果强调了在成年斑马鱼 ONC 后轴突再生过程中改变的胶质细胞相互作用的重要性。揭示不同细胞类型的相对贡献以及涉及的信号通路,可能会确定刺激脊椎动物 CNS 修复的新靶点。