Sawayama Saki, Morinaga Asuka, Mimura Hideyuki, Morita Masayuki, Katayama Yu, Fujii Kenta
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
TOSOH FINECHEM Corporation, 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan.
ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6201-6207. doi: 10.1021/acsami.0c19293. Epub 2021 Jan 27.
We propose a molecular design for lithium (Li)-ion-ordered complex structures in nonflammable concentrated electrolytes that facilitates the Li-ion battery (LIB) electrode reaction to produce safer LIBs. The concentrated electrolyte, composed of Li bis(fluorosulfonyl)amide (FSA) salt and a nonflammable tris(2,2,2-trifluoroethyl) phosphate (TFEP) solvent, showed no electrode reaction (i.e., no Li-ion intercalation into the negative graphite electrode); however, introducing a small molecular additive (acetonitrile [AN]) into concentrated TFEP-based electrolytes is shown to improve the battery electrode reaction, leading to reversible charge/discharge behavior. Combined high-energy X-ray total scattering experiments incorporating all-atom molecular dynamics simulations were used to visualize Li-ion complexes at the molecular level and revealed that (1) Li ions form mononuclear complexes in a concentrated LiFSA/TFEP (without additives) owing to solvation steric effects arising from the molecular size of TFEP and (2) adding a small-sized additive, AN, reduces the steric effect and triggers a change in Li-ion structures, i.e., the formation of a specific Li-ion-ordered structure linked via FSA anions. These Li-ion-ordered complexes stabilize the energy of the lowest unoccupied molecular orbital (LUMO) on FSA anions, which is key to producing an anion-derived solid electrolyte interphase (SEI) at the graphite electrode. We performed in situ surface-enhanced infrared absorption spectroscopy and discussed the electrode/electrolyte interface and SEI formation mechanisms in TFEP-based concentrated electrolyte systems.
我们提出了一种用于不可燃浓电解质中锂离子有序复合结构的分子设计,该设计有助于锂离子电池(LIB)的电极反应,从而生产出更安全的LIB。由双(氟磺酰)亚胺锂(FSA)盐和不可燃的三(2,2,2-三氟乙基)磷酸酯(TFEP)溶剂组成的浓电解质未显示出电极反应(即没有锂离子嵌入负极石墨电极);然而,向基于TFEP的浓电解质中引入小分子添加剂(乙腈[AN])可改善电池电极反应,从而实现可逆的充放电行为。结合高能X射线全散射实验和全原子分子动力学模拟,在分子水平上可视化锂离子络合物,结果表明:(1)由于TFEP分子大小引起的溶剂化空间效应,锂离子在浓LiFSA/TFEP(无添加剂)中形成单核络合物;(2)添加小尺寸添加剂AN可降低空间效应并引发锂离子结构的变化,即形成通过FSA阴离子连接的特定锂离子有序结构。这些锂离子有序络合物稳定了FSA阴离子上最低未占分子轨道(LUMO)的能量,这是在石墨电极上产生阴离子衍生的固体电解质界面(SEI)的关键。我们进行了原位表面增强红外吸收光谱研究,并讨论了基于TFEP的浓电解质体系中的电极/电解质界面和SEI形成机制。