Kaushik Shubham, Matsumoto Kazuhiko, Hagiwara Rika
Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10891-10901. doi: 10.1021/acsami.0c21412. Epub 2021 Feb 25.
Although high-capacity negative electrode materials are seen as a propitious strategy for improving the performance of lithium-ion batteries (LIBs), their advancement is curbed by issues such as pulverization during the charge/discharge process and the formation of an unstable solid electrolyte interphase (SEI). In particular, electrolytes play a vital role in determining the properties of an SEI layer. Thus, in this study, we investigate the performance of a red phosphorus/acetylene black composite (P/AB) prepared by high-energy ball milling as a negative electrode material for LIBs using organic and ionic liquid (IL) electrolytes. Galvanostatic tests performed on half cells demonstrate high discharge capacities in the 1386-1700 mAh (g-P/AB) range along with high Coulombic efficiencies of 85.3-88.2% in the first cycle, irrespective of the electrolyte used. Upon cycling, the Li[FSA]-[CCim][FSA] (FSA = bis(fluorosulfonyl)amide and CCim = 1-ethyl-3-methylimidazolium) IL electrolyte (2:8 in mol) demonstrates a high capacity retention of 78.8% after 350 cycles, whereas significant capacity fading is observed in the Li[PF] and Li[FSA] organic electrolytes. Electrochemical impedance spectroscopy conducted with cycling revealed lower interfacial resistance in the IL electrolyte than in the organic electrolytes. Scanning electron microscopy and X-ray photoelectron spectroscopy after cycling in different electrolytes evinced that the IL electrolyte facilitates the formation of a robust SEI layer comprising multiple layers of sulfur species resulting from FSA decomposition. A P/AB|LiFePO full cell using the IL electrolyte showed superior capacity retention than organic electrolytes and a high energy density under ambient conditions. This work not only illuminates the improved performance of a phosphorous-based negative electrode alongside ionic liquid electrolytes but also displays a viable strategy for the development of high-performance LIBs, especially for large-scale applications.
尽管高容量负极材料被视为提高锂离子电池(LIBs)性能的一种有利策略,但其发展受到诸如充放电过程中的粉化以及不稳定的固体电解质界面(SEI)形成等问题的制约。特别是,电解质在决定SEI层的性质方面起着至关重要的作用。因此,在本研究中,我们研究了通过高能球磨制备的红磷/乙炔黑复合材料(P/AB)作为使用有机电解质和离子液体(IL)电解质的LIBs负极材料的性能。在半电池上进行的恒电流测试表明,无论使用何种电解质,首次循环时的放电容量在1386 - 1700 mAh(g-P/AB)范围内,库仑效率高达85.3 - 88.2%。循环后,Li[FSA]-[CCim][FSA](FSA = 双(氟磺酰)酰胺,CCim = 1-乙基-3-甲基咪唑鎓)离子液体电解质(摩尔比为2:8)在350次循环后显示出78.8%的高容量保持率,而在Li[PF]和Li[FSA]有机电解质中观察到明显的容量衰减。循环过程中进行的电化学阻抗谱显示,离子液体电解质中的界面电阻低于有机电解质。在不同电解质中循环后的扫描电子显微镜和X射线光电子能谱表明,离子液体电解质促进了由FSA分解产生的包含多层硫物种的坚固SEI层的形成。使用离子液体电解质的P/AB|LiFePO全电池在环境条件下显示出比有机电解质更好的容量保持率和高能量密度。这项工作不仅阐明了磷基负极与离子液体电解质一起时性能的改善,还展示了一种开发高性能LIBs的可行策略,特别是对于大规模应用。