Zou Zhengxia, Shi Tianyang, Shi Zhenwei, Ye Jieping
IEEE Trans Image Process. 2021;30:2513-2525. doi: 10.1109/TIP.2021.3053398. Epub 2021 Feb 1.
Inverse problems are a group of important mathematical problems that aim at estimating source data x and operation parameters z from inadequate observations y . In the image processing field, most recent deep learning-based methods simply deal with such problems under a pixel-wise regression framework (from y to x ) while ignoring the physics behind. In this paper, we re-examine these problems under a different viewpoint and propose a novel framework for solving certain types of inverse problems in image processing. Instead of predicting x directly from y , we train a deep neural network to estimate the degradation parameters z under an adversarial training paradigm. We show that if the degradation behind satisfies some certain assumptions, the solution to the problem can be improved by introducing additional adversarial constraints to the parameter space and the training may not even require pair-wise supervision. In our experiment, we apply our method to a variety of real-world problems, including image denoising, image deraining, image shadow removal, non-uniform illumination correction, and underdetermined blind source separation of images or speech signals. The results on multiple tasks demonstrate the effectiveness of our method.
逆问题是一类重要的数学问题,旨在从不充分的观测值y估计源数据x和操作参数z。在图像处理领域,大多数基于深度学习的最新方法只是在逐像素回归框架下(从y到x)处理此类问题,而忽略了背后的物理原理。在本文中,我们从不同的角度重新审视这些问题,并提出了一种用于解决图像处理中某些类型逆问题的新颖框架。我们不是直接从y预测x,而是训练一个深度神经网络,在对抗训练范式下估计退化参数z。我们表明,如果背后的退化满足某些特定假设,则通过向参数空间引入额外的对抗约束可以改进问题的解决方案,并且训练甚至可能不需要成对监督。在我们的实验中,我们将我们的方法应用于各种实际问题,包括图像去噪、图像去雨、图像阴影去除、非均匀光照校正以及图像或语音信号的欠定盲源分离。多个任务的结果证明了我们方法的有效性。