Xiong Zhitong, Yuan Yuan, Wang Qi
IEEE Trans Image Process. 2021;30:2722-2733. doi: 10.1109/TIP.2021.3053459. Epub 2021 Feb 10.
Indoor scene images usually contain scattered objects and various scene layouts, which make RGB-D scene classification a challenging task. Existing methods still have limitations for classifying scene images with great spatial variability. Thus, how to extract local patch-level features effectively using only image label is still an open problem for RGB-D scene recognition. In this article, we propose an efficient framework for RGB-D scene recognition, which adaptively selects important local features to capture the great spatial variability of scene images. Specifically, we design a differentiable local feature selection (DLFS) module, which can extract the appropriate number of key local scene-related features. Discriminative local theme-level and object-level representations can be selected with DLFS module from the spatially-correlated multi-modal RGB-D features. We take advantage of the correlation between RGB and depth modalities to provide more cues for selecting local features. To ensure that discriminative local features are selected, the variational mutual information maximization loss is proposed. Additionally, the DLFS module can be easily extended to select local features of different scales. By concatenating the local-orderless and global-structured multi-modal features, the proposed framework can achieve state-of-the-art performance on public RGB-D scene recognition datasets.
室内场景图像通常包含分散的物体和各种场景布局,这使得RGB-D场景分类成为一项具有挑战性的任务。现有方法在对具有很大空间变异性的场景图像进行分类时仍存在局限性。因此,如何仅使用图像标签有效地提取局部补丁级特征仍然是RGB-D场景识别中的一个开放问题。在本文中,我们提出了一种用于RGB-D场景识别的高效框架,该框架自适应地选择重要的局部特征以捕捉场景图像的巨大空间变异性。具体来说,我们设计了一个可微局部特征选择(DLFS)模块,它可以提取适当数量的与局部场景相关的关键特征。通过DLFS模块,可以从空间相关的多模态RGB-D特征中选择有区分性的局部主题级和对象级表示。我们利用RGB和深度模态之间的相关性为选择局部特征提供更多线索。为确保选择有区分性的局部特征,提出了变分互信息最大化损失。此外,DLFS模块可以很容易地扩展以选择不同尺度的局部特征。通过连接局部无序和全局结构化的多模态特征,所提出的框架在公共RGB-D场景识别数据集上可以实现领先的性能。