Suppr超能文献

德国术前评分预测术后死亡率(POSPOM)的验证。

Validation of the Preoperative Score to Predict Postoperative Mortality (POSPOM) in Germany.

机构信息

Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.

Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Bonn, Germany.

出版信息

PLoS One. 2021 Jan 27;16(1):e0245841. doi: 10.1371/journal.pone.0245841. eCollection 2021.

Abstract

BACKGROUND

The Preoperative Score to Predict Postoperative Mortality (POSPOM) based on preoperatively available data was presented by Le Manach et al. in 2016. This prognostic model considers the kind of surgical procedure, patients' age and 15 defined comorbidities to predict the risk of postoperative in-hospital mortality. Objective of the present study was to validate POSPOM for the German healthcare coding system (G-POSPOM).

METHODS AND FINDINGS

All cases involving anaesthesia performed at the University Hospital Bonn between 2006 and 2017 were analysed retrospectively. Procedures codified according to the French Groupes Homogènes de Malades (GHM) were translated and adapted to the German Operationen- und Prozedurenschlüssel (OPS). Comorbidities were identified by the documented International Statistical Classification of Diseases (ICD-10) coding. POSPOM was calculated for the analysed patient collective using these data according to the method described by Le Manach et al. Performance of thereby adapted POSPOM was tested using c-statistic, Brier score and a calibration plot. Validation was performed using data from 199,780 surgical cases. With a mean age of 56.33 years (SD 18.59) and a proportion of 49.24% females, the overall cohort had a mean POSPOM value of 18.18 (SD 8.11). There were 4,066 in-hospital deaths, corresponding to an in-hospital mortality rate of 2.04% (95% CI 1.97 to 2.09%) in our sample. POSPOM showed a good performance with a c-statistic of 0.771 and a Brier score of 0.021.

CONCLUSIONS

After adapting POSPOM to the German coding system, we were able to validate the score using patient data of a German university hospital. According to previous demonstration for French patient cohorts, we observed a good correlation of POSPOM with in-hospital mortality. Therefore, further adjustments of POSPOM considering also multicentre and transnational validation should be pursued based on this proof of concept.

摘要

背景

Le Manach 等人于 2016 年提出了基于术前可用数据的预测术后死亡率的术前评分(POSPOM)。该预后模型考虑了手术类型、患者年龄和 15 种定义明确的合并症,以预测术后院内死亡率的风险。本研究的目的是验证 POSPOM 在德国医疗保健编码系统(G-POSPOM)中的应用。

方法和发现

回顾性分析了 2006 年至 2017 年在波恩大学医院进行的所有麻醉病例。根据法国同质疾病组(GHM)编码的程序被翻译并改编为德国手术和程序关键(OPS)。合并症通过记录的国际疾病分类(ICD-10)编码来确定。根据 Le Manach 等人描述的方法,使用这些数据为分析的患者群体计算 POSPOM。使用 C 统计量、Brier 评分和校准图测试由此改编的 POSPOM 的性能。使用来自 199780 例手术的验证数据进行验证。在我们的样本中,整个队列的平均年龄为 56.33 岁(标准差 18.59),女性比例为 49.24%,平均 POSPOM 值为 18.18(标准差 8.11)。有 4066 例院内死亡,院内死亡率为 2.04%(95%CI 1.97 至 2.09%)。POSPOM 的表现良好,C 统计量为 0.771,Brier 得分为 0.021。

结论

在将 POSPOM 改编为德国编码系统后,我们能够使用德国大学医院的患者数据对其进行验证。根据之前对法国患者队列的验证,我们观察到 POSPOM 与院内死亡率之间存在良好的相关性。因此,应该根据这一概念验证进一步调整 POSPOM,同时考虑多中心和跨国验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d799/7840059/ecfdf622bb2e/pone.0245841.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验