Suppr超能文献

一种非放射性、改良的 PAR-CLIP 和小 RNA cDNA 文库制备方案。

A non-radioactive, improved PAR-CLIP and small RNA cDNA library preparation protocol.

机构信息

Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, 20892 MD, USA.

Laboratory of Cellular and Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892 MD, USA.

出版信息

Nucleic Acids Res. 2021 May 7;49(8):e45. doi: 10.1093/nar/gkab011.

Abstract

Crosslinking and immunoprecipitation (CLIP) methods are powerful techniques to interrogate direct protein-RNA interactions and dissect posttranscriptional gene regulatory networks. One widely used CLIP variant is photoactivatable ribonucleoside enhanced CLIP (PAR-CLIP) that involves in vivo labeling of nascent RNAs with the photoreactive nucleosides 4-thiouridine (4SU) or 6-thioguanosine (6SG), which can efficiently crosslink to interacting proteins using UVA and UVB light. Crosslinking of 4SU or 6SG to interacting amino acids changes their base-pairing properties and results in characteristic mutations in cDNA libraries prepared for high-throughput sequencing, which can be computationally exploited to remove abundant background from non-crosslinked sequences and help pinpoint RNA binding protein binding sites at nucleotide resolution on a transcriptome-wide scale. Here we present a streamlined protocol for fluorescence-based PAR-CLIP (fPAR-CLIP) that eliminates the need to use radioactivity. It is based on direct ligation of a fluorescently labeled adapter to the 3'end of crosslinked RNA on immobilized ribonucleoproteins, followed by isolation of the adapter-ligated RNA and efficient conversion into cDNA without the previously needed size fractionation on denaturing polyacrylamide gels. These improvements cut the experimentation by half to 2 days and increases sensitivity by 10-100-fold.

摘要

交联和免疫沉淀(CLIP)方法是研究直接蛋白质-RNA 相互作用和剖析转录后基因调控网络的强大技术。一种广泛使用的 CLIP 变体是光激活核苷酸增强 CLIP(PAR-CLIP),它涉及用光反应性核苷 4-硫代尿嘧啶(4SU)或 6-硫代鸟嘌呤(6SG)对新生 RNA 进行体内标记,然后使用 UVA 和 UVB 光有效地与相互作用的蛋白质交联。4SU 或 6SG 与相互作用的氨基酸交联会改变它们的碱基配对性质,并导致 cDNA 文库中出现特征性突变,这些突变可用于计算从非交联序列中去除丰富的背景,并帮助在全转录组范围内以核苷酸分辨率精确定位 RNA 结合蛋白结合位点。在这里,我们提出了一种基于荧光的简化 PAR-CLIP(fPAR-CLIP)方案,该方案无需使用放射性物质。它基于将荧光标记的接头直接连接到固定化核糖核蛋白上交联 RNA 的 3'端,然后分离连接接头的 RNA,并在无需以前在变性聚丙烯酰胺凝胶上进行大小分级的情况下,有效地将其转化为 cDNA。这些改进将实验时间缩短了一半,达到 2 天,并将灵敏度提高了 10-100 倍。

相似文献

1
A non-radioactive, improved PAR-CLIP and small RNA cDNA library preparation protocol.
Nucleic Acids Res. 2021 May 7;49(8):e45. doi: 10.1093/nar/gkab011.
2
PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites.
Methods. 2017 Apr 15;118-119:41-49. doi: 10.1016/j.ymeth.2016.11.009. Epub 2016 Nov 18.
6
Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins.
Methods. 2017 Apr 15;118-119:24-40. doi: 10.1016/j.ymeth.2016.10.007. Epub 2016 Oct 17.
10
PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins.
Methods Mol Biol. 2018;1720:55-75. doi: 10.1007/978-1-4939-7540-2_5.

引用本文的文献

1
Identification of RNA binding proteins that mediate a quality control mechanism of splicing.
bioRxiv. 2025 Jul 23:2025.07.20.665773. doi: 10.1101/2025.07.20.665773.
3
Nuclear AGO2 supports influenza A virus replication through type-I interferon regulation.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf268.
5
Nuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role.
Mol Cell. 2024 Oct 3;84(19):3775-3789.e6. doi: 10.1016/j.molcel.2024.07.025. Epub 2024 Aug 16.
6
Viral hijacking of hnRNPH1 unveils a G-quadruplex-driven mechanism of stress control.
Cell Host Microbe. 2024 Sep 11;32(9):1579-1593.e8. doi: 10.1016/j.chom.2024.07.006. Epub 2024 Aug 1.
7
Characterization of RVFV Nucleocapsid Protein Binding Sites on RNA by iCLIP-seq.
Methods Mol Biol. 2024;2824:319-334. doi: 10.1007/978-1-0716-3926-9_19.
8
Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference.
Nucleic Acids Res. 2024 Sep 9;52(16):9917-9935. doi: 10.1093/nar/gkae589.
9
GTPBP8 plays a role in mitoribosome formation in human mitochondria.
Nat Commun. 2024 Jul 5;15(1):5664. doi: 10.1038/s41467-024-50011-x.
10
Structural basis of MALAT1 RNA maturation and mascRNA biogenesis.
Nat Struct Mol Biol. 2024 Nov;31(11):1655-1668. doi: 10.1038/s41594-024-01340-4. Epub 2024 Jul 2.

本文引用的文献

2
The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation.
Genes Dev. 2019 May 1;33(9-10):482-497. doi: 10.1101/gad.319590.118. Epub 2019 Mar 6.
4
Advances in CLIP Technologies for Studies of Protein-RNA Interactions.
Mol Cell. 2018 Feb 1;69(3):354-369. doi: 10.1016/j.molcel.2018.01.005.
6
PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites.
Methods. 2017 Apr 15;118-119:41-49. doi: 10.1016/j.ymeth.2016.11.009. Epub 2016 Nov 18.
7
Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins.
Methods. 2017 Apr 15;118-119:24-40. doi: 10.1016/j.ymeth.2016.10.007. Epub 2016 Oct 17.
8
irCLIP platform for efficient characterization of protein-RNA interactions.
Nat Methods. 2016 Jun;13(6):489-92. doi: 10.1038/nmeth.3840. Epub 2016 Apr 25.
9
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Nat Methods. 2016 Jun;13(6):508-14. doi: 10.1038/nmeth.3810. Epub 2016 Mar 28.
10
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 2015 Aug 12;4:e05005. doi: 10.7554/eLife.05005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验