Suppr超能文献

采用人工神经网络和遗传算法人工神经网络同时分光光度定量分析最近 FDA 批准的药物制剂中的维帕他韦和索非布韦。

Simultaneous spectrophotometric quantitative analysis of velpatasvir and sofosbuvir in recently approved FDA pharmaceutical preparation using artificial neural networks and genetic algorithm artificial neural networks.

机构信息

Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Apr 15;251:119465. doi: 10.1016/j.saa.2021.119465. Epub 2021 Jan 15.

Abstract

Two chemometric assisted spectrophotometric models were applied for the quantitative analysis of velpatasvir and sofosbuvir in their newly FDA approved pharmaceutical dosage form. The UV absorption spectra of velpatasvir and sofosbuvir showed certain degree of overlap which exhibited degree of difficulty for the choice of certain method provides simultaneous quantitative analysis of the cited drugs. Artificial neural networks and genetic algorithm artificial neural networks were the suitable model for the quantitative analysis of velpatasvir and sofosbuvir in their binary mixture. Experimental design and building the calibration set for the binary mixture were achieved to implement the described models. The proposed models were optimized with the aid of five-levels, two factors experimental design. Spectral region of 380-400 nm was rejected which resulted in 181 variables. GA reduced absorbance matrix to 72 and 36 variables for velpatasvir and sofosbuvir respectively. The models succeeded to estimate the studied drugs with acceptable values of root mean square error of calibration and root mean square error of prediction. The developed models were successfully applied to the quantitative analysis of the two drugs in Epclusa® tablets. The results were statistically compared with another published quantitative analytical method with no significant difference by applying Student t-test and variance ratio F-test.

摘要

两种化学计量学辅助分光光度模型被应用于定量分析 velpatasvir 和 sofosbuvir 在他们新的 FDA 批准的药物剂型。velpatasvir 和 sofosbuvir 的紫外吸收光谱显示出一定程度的重叠,这对选择某些方法提供了一定的难度,这些方法可以同时定量分析引用的药物。人工神经网络和遗传算法人工神经网络是定量分析二元混合物中 velpatasvir 和 sofosbuvir 的合适模型。实验设计和建立二元混合物的校准集是实现描述模型的基础。提出的模型通过 5 级、2 因素实验设计进行了优化。光谱区域 380-400nm 被拒绝,导致 181 个变量。GA 将吸光度矩阵分别减少到 72 和 36 个变量,用于 velpatasvir 和 sofosbuvir。该模型成功地用可接受的校准均方根误差和预测均方根误差值来估计研究中的药物。所开发的模型成功地应用于 Epclusa®片剂中两种药物的定量分析。通过应用学生 t 检验和方差比 F 检验,将结果与另一种已发表的定量分析方法进行了统计学比较,没有显著差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验