文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多权重鸡群遗传算法的节能分簇无线传感器网络

MWCSGA-Multi Weight Chicken Swarm Based Genetic Algorithm for Energy Efficient Clustered Wireless Sensor Network.

机构信息

Micro-Optoelectronic and Nanostructures Laboratory (LR99ES29), Faculty of Sciences of Monastir, University of Monastir, Environment Street, 5019 Monastir, Tunisia.

IRIMAS Laboratory/GRTC, University of Haute Alsace, 68008 Colmar, France.

出版信息

Sensors (Basel). 2021 Jan 25;21(3):791. doi: 10.3390/s21030791.


DOI:10.3390/s21030791
PMID:33504006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7865231/
Abstract

Nowadays due to smart environment creation there is a rapid growth in wireless sensor network (WSN) technology real time applications. The most critical resource in in WSN is battery power. One of the familiar methods which mainly concentrate in increasing the power factor in WSN is clustering. In this research work, a novel concept for clustering is introduced which is multi weight chicken swarm based genetic algorithm for energy efficient clustering (MWCSGA). It mainly consists of six sections. They are system model, chicken swarm optimization, genetic algorithm, CCSO-GA cluster head selection, multi weight clustering model, inter cluster, and intra cluster communication. In the performance evaluation the proposed model is compared with few earlier methods such as Genetic Algorithm-Based Energy-Efficient Adaptive Clustering Protocol For Wireless Sensor Networks (GA-LEACH), Low energy adaptive Clustering hierarchy approach for WSN (MW-LEACH) and Chicken Swarm Optimization based Genetic Algorithm (CSOGA). During the comparison it is proved that our proposed method performed well in terms of energy efficiency, end to end delay, packet drop, packet delivery ratio and network throughput.

摘要

如今,由于智能环境的创建,无线传感器网络 (WSN) 技术的实时应用得到了快速发展。WSN 中最关键的资源是电池电量。一种主要集中在提高 WSN 中的功率因数的常见方法是聚类。在这项研究工作中,引入了一种新的聚类概念,即基于多权重鸡群的遗传算法的节能聚类 (MWCSGA)。它主要由六个部分组成。它们是系统模型、鸡群优化、遗传算法、CCS0-GA 簇头选择、多权重聚类模型、簇间和簇内通信。在性能评估中,将提出的模型与一些早期的方法进行了比较,例如基于遗传算法的节能自适应聚类协议用于无线传感器网络 (GA-LEACH)、用于 WSN 的低能耗自适应聚类层次方法 (MW-LEACH) 和基于鸡群优化的遗传算法 (CSOGA)。在比较过程中,证明了我们提出的方法在能量效率、端到端延迟、数据包丢失、数据包传输率和网络吞吐量方面表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/f12d403f4593/sensors-21-00791-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/fd9b3d5e2665/sensors-21-00791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/2f846a823056/sensors-21-00791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/423263e4b8fe/sensors-21-00791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/01393c22b9a1/sensors-21-00791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/b34fafa5cdf0/sensors-21-00791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/c038aa0f17e6/sensors-21-00791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/a47c47ae45fe/sensors-21-00791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/fd4f82bb4c96/sensors-21-00791-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/d88435c2939b/sensors-21-00791-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/79b6108045d1/sensors-21-00791-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/76fbf229b3f9/sensors-21-00791-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/2a1f4ffb3273/sensors-21-00791-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/9967d8eaa6c7/sensors-21-00791-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/f12d403f4593/sensors-21-00791-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/fd9b3d5e2665/sensors-21-00791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/2f846a823056/sensors-21-00791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/423263e4b8fe/sensors-21-00791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/01393c22b9a1/sensors-21-00791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/b34fafa5cdf0/sensors-21-00791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/c038aa0f17e6/sensors-21-00791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/a47c47ae45fe/sensors-21-00791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/fd4f82bb4c96/sensors-21-00791-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/d88435c2939b/sensors-21-00791-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/79b6108045d1/sensors-21-00791-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/76fbf229b3f9/sensors-21-00791-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/2a1f4ffb3273/sensors-21-00791-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/9967d8eaa6c7/sensors-21-00791-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c1/7865231/f12d403f4593/sensors-21-00791-g014.jpg

相似文献

[1]
MWCSGA-Multi Weight Chicken Swarm Based Genetic Algorithm for Energy Efficient Clustered Wireless Sensor Network.

Sensors (Basel). 2021-1-25

[2]
Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks.

Sensors (Basel). 2023-3-3

[3]
Efficient and optimized communication in biomedical sensor networks based on bioinspired particle swarm optimization for medical applications.

Med Eng Phys. 2022-12

[4]
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

ScientificWorldJournal. 2016

[5]
Network Lifetime Improvement through Energy-Efficient Hybrid Routing Protocol for IoT Applications.

Sensors (Basel). 2021-11-9

[6]
Enhanced Message-Passing Based LEACH Protocol for Wireless Sensor Networks.

Sensors (Basel). 2018-12-25

[7]
Multi Swarm Optimization Based Clustering with Tabu Search in Wireless Sensor Network.

Sensors (Basel). 2022-2-23

[8]
Wireless optimization for sensor networks using IoT-based clustering and routing algorithms.

PeerJ Comput Sci. 2024-6-17

[9]
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.

ScientificWorldJournal. 2015

[10]
An Improved Energy-Efficient Routing Protocol for Wireless Sensor Networks.

Sensors (Basel). 2019-10-21

引用本文的文献

[1]
Low power energy balanced clustering routing scheme based on improved SSA and Multi-Hop transmission in IoT.

Sci Rep. 2025-4-11

[2]
Clustered Routing Using Chaotic Genetic Algorithm with Grey Wolf Optimization to Enhance Energy Efficiency in Sensor Networks.

Sensors (Basel). 2024-7-7

[3]
Numerical Study of the Environmental and Economic System through the Computational Heuristic Based on Artificial Neural Networks.

Sensors (Basel). 2021-9-30

[4]
Intelligent Trajectory Tracking Behavior of a Multi-Joint Robotic Arm via Genetic-Swarm Optimization for the Inverse Kinematic Solution.

Sensors (Basel). 2021-5-3

本文引用的文献

[1]
Efficient clustering in collaborative filtering recommender system: Hybrid method based on genetic algorithm and gravitational emulation local search algorithm.

Genomics. 2019-1-3

[2]
Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

Sensors (Basel). 2017-7-3

[3]
On a vector space representation in genetic algorithms for sensor scheduling in wireless sensor networks.

Evol Comput. 2014-2-6

[4]
Wireless Sensor Networks for oceanographic monitoring: a systematic review.

Sensors (Basel). 2010-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索