Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
Institute of Biology, University of Graz, Graz, Austria.
Microbiome. 2021 Jan 27;9(1):29. doi: 10.1186/s40168-020-00982-y.
Antimicrobial resistance (AMR) is a major threat to public health. Microorganisms equipped with AMR genes are suggested to have partially emerged from natural habitats; however, this hypothesis remains inconclusive so far. To understand the consequences of the introduction of exogenic antimicrobials into natural environments, we exposed lichen thalli of Peltigera polydactylon, which represent defined, highly diverse miniature ecosystems, to clinical (colistin, tetracycline), and non-clinical (glyphosate, alkylpyrazine) antimicrobials. We studied microbiome responses by analysing DNA- and RNA-based amplicon libraries and metagenomic datasets.
The analyzed samples consisted of the thallus-forming fungus that is associated with cyanobacteria as well as other diverse and abundant bacterial communities (up to 10 16S rRNA gene copies ng DNA) dominated by Alphaproteobacteria and Bacteroidetes. Moreover, the natural resistome of this meta-community encompassed 728 AMR genes spanning 30 antimicrobial classes. Following 10 days of exposure to the selected antimicrobials at four different concentrations (full therapeutic dosage and a gradient of sub-therapeutic dosages), we observed statistically significant, antimicrobial-specific shifts in the structure and function but not in bacterial abundances within the microbiota. We observed a relatively lower response after the exposure to the non-clinical compared to the clinical antimicrobial compounds. Furthermore, we observed specific bacterial responders, e.g., Pseudomonas and Burkholderia to clinical antimicrobials. Interestingly, the main positive responders naturally occur in low proportions in the lichen holobiont. Moreover, metagenomic recovery of the responders' genomes suggested that they are all naturally equipped with specific genetic repertoires that allow them to thrive and bloom when exposed to antimicrobials. Of the responders, Sphingomonas, Pseudomonas, and Methylobacterium showed the highest potential.
Antimicrobial exposure resulted in a microbial dysbiosis due to a bloom of naturally low abundant taxa (positive responders) with specific AMR features. Overall, this study provides mechanistic insights into community-level responses of a native microbiota to antimicrobials and suggests novel strategies for AMR prediction and management. Video Abstract.
抗菌药物耐药性(AMR)是对公共卫生的主要威胁。具有 AMR 基因的微生物被认为部分源自自然栖息地;然而,到目前为止,这一假设尚无定论。为了了解外源抗菌药物引入自然环境的后果,我们将皮氏叶苔(Peltigera polydactylon)的藻状菌暴露于临床(黏菌素、四环素)和非临床(草甘膦、烷基吡嗪)抗菌药物中,这些藻状菌代表了明确的、高度多样化的微型生态系统。我们通过分析 DNA 和 RNA 扩增子文库和宏基因组数据集来研究微生物组的反应。
分析的样本包括与蓝细菌共生的叶状真菌,以及其他多样化且丰富的细菌群落(高达 10 个 16S rRNA 基因拷贝 ng DNA),主要由α变形菌和拟杆菌门组成。此外,该元群落的天然抗药基因组包含 728 个 AMR 基因,涵盖 30 种抗菌药物类别。在四种不同浓度(全治疗剂量和一系列亚治疗剂量)下暴露于所选抗菌药物 10 天后,我们观察到微生物群结构和功能发生了具有统计学意义的、抗菌药物特异性的变化,但细菌丰度没有变化。与临床抗菌化合物相比,非临床抗菌化合物暴露后的反应相对较低。此外,我们观察到了特定的细菌反应者,如临床抗菌化合物中的假单胞菌和伯克霍尔德菌。有趣的是,主要的阳性反应者在苔藓共生体中自然存在的比例较低。此外,对反应者基因组的宏基因组回收表明,它们都自然具有特定的遗传组成,使它们在暴露于抗菌药物时能够茁壮成长。在反应者中,鞘氨醇单胞菌、假单胞菌和甲基杆菌表现出最高的潜力。
抗菌药物暴露导致微生物失调,原因是具有特定 AMR 特征的自然低丰度分类群(阳性反应者)大量繁殖。总的来说,这项研究为原生微生物群对抗菌药物的群落水平反应提供了机制上的见解,并为 AMR 预测和管理提出了新的策略。