Zhang Wenrui, Bollinger Anthony T, Li Ruoshui, Kisslinger Kim, Tong Xiao, Liu Mingzhao, Black Charles T
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Sci Rep. 2021 Jan 27;11(1):2358. doi: 10.1038/s41598-021-82046-1.
We present a new method for thin-film synthesis of the superconducting A15 phase of vanadium silicide with critical temperature higher than 13 K. Interdiffusion between a metallic vanadium film and the underlying silicon device layer in a silicon-on-insulator substrate, at temperatures between 650 and 750 °C, favors formation of the vanadium-rich A15 phase by limiting the supply of available silicon for the reaction. Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction verify the stoichiometry and structure of the synthesized thin films. We measure superconducting critical currents of more than 10 amperes per square centimeter at low temperature in micron-scale bars fabricated from the material, and an upper critical magnetic field of 20 T, from which we deduce a superconducting coherence length of 4 nm, consistent with previously reported bulk values. The relatively high critical temperature of A15 vanadium silicide is an appealing property for use in silicon-compatible quantum devices and circuits.
我们提出了一种用于薄膜合成临界温度高于13 K的硅化钒超导A15相的新方法。在650至750°C的温度下,金属钒膜与绝缘体上硅衬底中下层硅器件层之间的相互扩散,通过限制反应中可用硅的供应,有利于富钒A15相的形成。能量色散X射线光谱、X射线光电子能谱和X射线衍射验证了合成薄膜的化学计量和结构。我们在由该材料制成的微米级棒中测量到低温下每平方厘米超过10安培的超导临界电流,以及20 T的上临界磁场,由此我们推断出超导相干长度为4 nm,与先前报道的体材料值一致。A15硅化钒相对较高的临界温度对于用于硅兼容量子器件和电路来说是一个吸引人的特性。