Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
Br J Pharmacol. 2021 Apr;178(7):1651-1668. doi: 10.1111/bph.15389. Epub 2021 Feb 27.
The α7 and α4β2* ("*" denotes possibly assembly with another subunit) nicotinic acetylcholine receptors (nAChRs) are the most abundant nAChRs in the mammalian brain. These receptors are the most targeted nAChRs in drug discovery programmes for brain disorders. However, the development of subtype-specific agonists remains challenging due to the high degree of sequence homology and conservation of function in nAChRs. We have developed C(10) variants of cytisine, a partial agonist of α4β2 nAChR that has been used for smoking cessation. The C(10) methyl analogue used in this study displays negligible affinity for α7 nAChR, while retaining high affinity for α4β2 nAChR.
The structural underpinning of the selectivity of 10-methylcytisine for α7 and α4β2 nAChRs was investigated using molecular dynamic simulations, mutagenesis and whole-cell and single-channel current recordings.
We identified a conserved arginine in the β3 strand that exhibits a non-conserved function in nAChRs. In α4β2 nAChR, the arginine forms a salt bridge with an aspartate residue in loop B that is necessary for receptor expression, whereas in α7 nAChR, this residue is not stabilised by electrostatic interactions, making its side chain highly mobile. This lack of constrain produces steric clashes with agonists and affects the dynamics of residues involved in agonist binding and the coupling network.
We conclude that the high mobility of the β3-strand arginine in the α7 nAChR influences agonist binding and possibly gating network and desensitisation. The findings have implications for rational design of subtype-selective nAChR agents.
α7 和 α4β2*(“*”表示可能与另一个亚基组装)烟碱型乙酰胆碱受体(nAChR)是哺乳动物大脑中最丰富的 nAChR。这些受体是用于治疗脑部疾病的药物发现计划中最具靶向性的 nAChR。然而,由于 nAChR 具有高度的序列同源性和功能保守性,因此开发亚型特异性激动剂仍然具有挑战性。我们已经开发了烟碱的 C(10) 变体,这是一种用于戒烟的 α4β2 nAChR 的部分激动剂。本研究中使用的 C(10) 甲基类似物对 α7 nAChR 的亲和力可忽略不计,同时对 α4β2 nAChR 保持高亲和力。
使用分子动力学模拟、突变和全细胞及单通道电流记录研究了 10-甲基烟碱对 α7 和 α4β2 nAChR 选择性的结构基础。
我们确定了β3 链中一个保守的精氨酸,它在 nAChR 中具有非保守的功能。在 α4β2 nAChR 中,精氨酸与 B 环中的天冬氨酸残基形成盐桥,这对于受体表达是必需的,而在 α7 nAChR 中,该残基不能通过静电相互作用稳定,使其侧链高度移动。这种缺乏约束会与激动剂产生空间冲突,并影响与激动剂结合和偶联网络相关的残基的动力学。
我们得出结论,α7 nAChR 中β3 链精氨酸的高迁移率会影响激动剂的结合,并且可能影响门控网络和脱敏。这些发现对合理设计亚型选择性 nAChR 药物具有启示意义。