ARC Centre of Excellence for Innovations in Peptide and Protein Science, Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
Chembiochem. 2021 May 14;22(10):1784-1789. doi: 10.1002/cbic.202000796. Epub 2021 Mar 15.
The conventional S-alkylation of cysteine relies upon using activated electrophiles. Here we demonstrate high-yielding and selective S-alkylation and S-lipidation of cysteines in unprotected synthetic peptides and proteins by using weak electrophiles and a Zn promoter. Linear or branched iodoalkanes can S-alkylate cysteine in an unprotected 38-residue Myc peptide fragment and in a 91-residue miniprotein Omomyc, thus highlighting selective late-stage synthetic modifications. Metal-assisted cysteine alkylation is also effective for incorporating dehydroalanine into unprotected peptides and for peptide cyclisation via aliphatic thioether crosslinks, including customising macrocycles to stabilise helical peptides for enhanced uptake and delivery to proteins inside cells. Chemoselective and efficient late-stage Zn -promoted cysteine alkylation in unprotected peptides and proteins promises many useful applications.
传统的半胱氨酸 S-烷基化依赖于使用活化的亲电试剂。在这里,我们通过使用弱亲电试剂和 Zn 促进剂,在未保护的合成肽和蛋白质中实现了高产率和选择性的半胱氨酸 S-烷基化和 S-脂化。线性或支链碘代烷烃可以对半胱氨酸进行 S-烷基化,可作用于未保护的 38 残基 Myc 肽片段和 91 残基的 Omomyc 小蛋白,从而突出了选择性的晚期合成修饰。金属辅助半胱氨酸烷基化对于将脱氢丙氨酸掺入未保护的肽中以及通过脂肪族硫醚交联进行肽环化也很有效,包括定制大环以稳定螺旋肽以增强摄取并递送到细胞内的蛋白质。未保护的肽和蛋白质中化学选择性和高效的晚期 Zn 促进的半胱氨酸烷基化有望有许多有用的应用。