Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
Dev Growth Differ. 2021 Feb;63(2):178-186. doi: 10.1111/dgd.12711. Epub 2021 Mar 4.
In the body, platelets mainly work as a hemostatic agent, and the lack of platelets can cause serious bleeding. Induced pluripotent stem (iPS) cells potentially allow for a stable supply of platelets that are independent of donors and eliminate the risk of infection. However, a major challenge in iPS cell-based systems is producing the number of platelets required for a single transfusion (more than 200 billion in Japan). Thus, development in large-scale culturing technology is required. In previous studies, we generated a self-renewable, immortalized megakaryocyte cell line by transfecting iPS cell-derived hematopoietic progenitor cells with c-MYC, BMI1, and BCL-XL genes. Optimization of the culture conditions, including the discovery of a novel fluid-physical factor, turbulence, in the production of platelets in vivo, and the development of bioreactors that apply turbulence have enabled us to generate platelets of clinical quality and quantity. We have further generated platelets deleted of HLA class I expression by using genetic modification technology for patients suffering from alloimmune transfusion refractoriness, since these patients are underserved by current blood donation systems. In this review, we highlight current research and our recent work on iPS cell-derived platelet induction.
在体内,血小板主要作为止血剂,血小板缺乏会导致严重出血。诱导多能干细胞(iPS)细胞有可能提供稳定的血小板供应,这些血小板不依赖供体,可以消除感染风险。然而,iPS 细胞为基础的系统的一个主要挑战是生产单次输血所需的血小板数量(在日本超过 2000 亿)。因此,需要开发大规模培养技术。在以前的研究中,我们通过转染 iPS 细胞衍生的造血祖细胞中的 c-MYC、BMI1 和 BCL-XL 基因,生成了一种自我更新的、永生化的巨核细胞系。优化培养条件,包括在体内产生血小板过程中发现一种新的流体物理因素——湍流,以及开发应用湍流的生物反应器,使我们能够生成具有临床质量和数量的血小板。我们还通过使用基因修饰技术为患有同种免疫输血反应性的患者生成 HLA Ⅰ类表达缺失的血小板,因为这些患者目前的献血系统无法满足他们的需求。在这篇综述中,我们强调了 iPS 细胞衍生血小板诱导的当前研究和我们最近的工作。