Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
J Biol Chem. 2021 Jan-Jun;296:100339. doi: 10.1016/j.jbc.2021.100339. Epub 2021 Jan 26.
The eukaryotic kinase domain has multiple intrinsically disordered regions whose conformation dictates kinase activity. Small molecule kinase inhibitors (SMKIs) rely on disrupting the active conformations of these disordered regions to inactivate the kinase. While SMKIs are selected for their ability to cause this disruption, the allosteric effects of conformational changes in disordered regions is limited by a lack of dynamic information provided by traditional structural techniques. In this study, we integrated multiscale molecular dynamics simulations with FRET sensors to characterize a novel allosteric mechanism that is selectively triggered by SMKI binding to the protein kinase Cα domain. The indole maleimide inhibitors BimI and sotrastaurin were found to displace the Gly-rich loop (G-loop) that normally shields the ATP-binding site. Displacement of the G-loop interferes with a newly identified, structurally conserved binding pocket for the C1a domain on the N lobe of the kinase domain. This binding pocket, in conjunction with the N-terminal regulatory sequence, masks a diacylglycerol (DAG) binding site on the C1a domain. SMKI-mediated displacement of the G-loop released C1a and exposed the DAG binding site, enhancing protein kinase Cα translocation both to synthetic lipid bilayers and to live cell membranes in the presence of DAG. Inhibitor chemotype determined the extent of the observed allosteric effects on the kinase domain and correlated with the extent of membrane recruitment. Our findings demonstrate the allosteric effects of SMKIs beyond the confines of kinase catalytic conformation and provide an integrated computational-experimental paradigm to investigate parallel mechanisms in other kinases.
真核激酶结构域含有多个固有无序区域,其构象决定激酶活性。小分子激酶抑制剂(SMKIs)依赖于破坏这些无序区域的活性构象来使激酶失活。虽然 SMKIs 是根据其引起这种破坏的能力来选择的,但无序区域构象变化的变构效应受到传统结构技术提供的动态信息有限的限制。在这项研究中,我们将多尺度分子动力学模拟与 FRET 传感器相结合,以表征一种新的变构机制,该机制选择性地由 SMKI 与蛋白激酶 Cα 结构域结合触发。发现吲哚马来酰亚胺抑制剂 BimI 和 sotrastaurin 置换了通常屏蔽 ATP 结合位点的富含甘氨酸的环(G-环)。G-环的置换干扰了激酶结构域 N lobe 上 C1a 结构域上新发现的结构保守的结合口袋。该结合口袋与 N 端调节序列一起掩盖了 C1a 结构域上的二酰基甘油(DAG)结合位点。SMKI 介导的 G-环位移释放了 C1a 并暴露了 DAG 结合位点,增强了蛋白激酶 Cα 在 DAG 存在下向合成脂质双层和活细胞膜的易位。抑制剂化学型决定了观察到的对激酶结构域的变构效应的程度,并与膜募集的程度相关。我们的研究结果表明了 SMKIs 对激酶催化构象之外的变构效应,并提供了一个集成的计算-实验范例来研究其他激酶中的并行机制。