Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
J Biol Chem. 2021 Jan-Jun;296:100332. doi: 10.1016/j.jbc.2021.100332. Epub 2021 Jan 27.
Traditionally, lipolysis has been regarded as an enzymatic activity that liberates fatty acids as metabolic fuel. However, recent work has shown that novel substrates, including a variety of lipid compounds such as fatty acids and their derivatives, release lipolysis products that act as signaling molecules and transcriptional modulators. While these studies have expanded the role of lipolysis, the mechanisms underpinning lipolysis signaling are not fully defined. Here, we uncover a new mechanism regulating glucose uptake, whereby activation of lipolysis, in response to elevated cAMP, leads to the stimulation of thioredoxin-interacting protein (TXNIP) degradation. This, in turn, selectively induces glucose transporter 1 surface localization and glucose uptake in 3T3-L1 adipocytes and increases lactate production. Interestingly, cAMP-induced glucose uptake via degradation of TXNIP is largely dependent upon adipose triglyceride lipase (ATGL) and not hormone-sensitive lipase or monoacylglycerol lipase. Pharmacological inhibition or knockdown of ATGL alone prevents cAMP-dependent TXNIP degradation and thus significantly decreases glucose uptake and lactate secretion. Conversely, overexpression of ATGL amplifies the cAMP response, yielding increased glucose uptake and lactate production. Similarly, knockdown of TXNIP elicits enhanced basal glucose uptake and lactate secretion, and increased cAMP further amplifies this phenotype. Overexpression of TXNIP reduces basal and cAMP-stimulated glucose uptake and lactate secretion. As a proof of concept, we replicated these findings in human primary adipocytes and observed TXNIP degradation and increased glucose uptake and lactate secretion upon elevated cAMP signaling. Taken together, our results suggest a crosstalk between ATGL-mediated lipolysis and glucose uptake.
传统上,脂肪分解被认为是一种释放脂肪酸作为代谢燃料的酶活性。然而,最近的研究表明,新型底物,包括各种脂质化合物,如脂肪酸及其衍生物,释放脂肪分解产物,作为信号分子和转录调节剂。虽然这些研究扩展了脂肪分解的作用,但脂肪分解信号的机制尚未完全定义。在这里,我们揭示了一种新的调节葡萄糖摄取的机制,即脂肪分解的激活,对升高的 cAMP 的反应,导致硫氧还蛋白相互作用蛋白 (TXNIP) 的降解。反过来,这选择性地诱导 3T3-L1 脂肪细胞中葡萄糖转运蛋白 1 的表面定位和葡萄糖摄取,并增加乳酸的产生。有趣的是,通过 TXNIP 的降解诱导 cAMP 诱导的葡萄糖摄取在很大程度上取决于脂肪甘油三酯脂肪酶 (ATGL),而不是激素敏感脂肪酶或单酰基甘油脂肪酶。单独抑制或敲低 ATGL 可防止 cAMP 依赖性 TXNIP 降解,从而显著降低葡萄糖摄取和乳酸分泌。相反,ATGL 的过表达放大了 cAMP 反应,导致葡萄糖摄取和乳酸产生增加。同样,敲低 TXNIP 会引起基础葡萄糖摄取和乳酸分泌增加,而升高的 cAMP 进一步放大这种表型。TXNIP 的过表达会降低基础和 cAMP 刺激的葡萄糖摄取和乳酸分泌。作为一个概念验证,我们在人原代脂肪细胞中复制了这些发现,并观察到 cAMP 信号升高时 TXNIP 的降解以及葡萄糖摄取和乳酸分泌的增加。总之,我们的结果表明 ATGL 介导的脂肪分解与葡萄糖摄取之间存在串扰。