Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA.
Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA.
J Glob Antimicrob Resist. 2021 Mar;24:403-410. doi: 10.1016/j.jgar.2021.01.005. Epub 2021 Jan 26.
To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration-time curve (AUC) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin.
We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway.
Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log CFU/mL Mtb. The EC was calculated as AUC/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log CFU/mL kill was achieved by AUC/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase.
Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb.
确定高肺内 24 小时浓度-时间曲线下面积(AUC)的吸入万古霉素制剂是否可优化结核病治疗。我们还探索了万古霉素与 d-环丝氨酸和苯唑西林的协同作用和拮抗作用。
我们测定了两种结核分枝杆菌(Mtb)实验室株(H37Ra 和 H37Rv)和两种药敏及九种耐多药临床株的 MIC。其次,在使用 Mtb H37Ra 株的中空纤维系统结核模型[HFS-TB]中,我们模拟半衰期为 6 小时,重复了 28 天内每天两次给予 8 剂万古霉素的肺内药代动力学。在 HFS-TB 中,测试了万古霉素与 d-环丝氨酸和苯唑西林联合用药,以确定针对同一途径的药物之间的协同作用或拮抗作用。
万古霉素药敏临床分离株的 MIC 为 12 和 48mg/L,但所有耐多药分离株的 MIC 均>96mg/L。在 HFS-TB 中,万古霉素杀死了 3.9±0.6 对数 CFU/mL Mtb。EC 计算为 AUC/MIC 为 184.6±106.5。与第 0 天相比,AUC/MIC 分别为 168 和 685 时,可实现 1.0 和 2.0 对数 CFU/mL 的杀灭。在 HFS-TB 中,万古霉素对所有测试的万古霉素剂量均产生了耐药性。在 HFS-TB 中,万古霉素与苯唑西林拮抗,苯唑西林作用于糖肽在肽聚糖合成中的下游,而与 d-环丝氨酸协同,d-环丝氨酸抑制上游的 d-Ala-d-Ala 连接酶和丙氨酸消旋酶。
我们的概念验证研究表明,通过吸入性药物输送可以实现万古霉素对 Mtb 杀伤的最佳暴露目标。添加与万古霉素协同作用的药物,例如 d-环丝氨酸,可能会降低杀死 Mtb 所需的万古霉素浓度。