Laboratoire de Physique de l'Ecole Normale Supérieure, UMR 8023, CNRS, Université de Paris, PSL Research University, 75005 Paris, France;
Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, PSL Research University, Sorbonne Université, Université de Paris, 75005 Paris, France.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2012386118.
Aeolian sediment transport is observed to occur on Mars as well as other extraterrestrial environments, generating ripples and dunes as on Earth. The search for terrestrial analogs of planetary bedforms, as well as environmental simulation experiments able to reproduce their formation in planetary conditions, are powerful ways to question our understanding of geomorphological processes toward unusual environmental conditions. Here, we perform sediment transport laboratory experiments in a closed-circuit wind tunnel placed in a vacuum chamber and operated at extremely low pressures to show that Martian conditions belong to a previously unexplored saltation regime. The threshold wind speed required to initiate saltation is only quantitatively predicted by state-of-the art models up to a density ratio between grain and air of [Formula: see text] but unexpectedly falls to much lower values for higher density ratios. In contrast, impact ripples, whose emergence is continuously observed on the granular bed over the whole pressure range investigated, display a characteristic wavelength and propagation velocity essentially independent of pressure. A comparison of these findings with existing models suggests that sediment transport at low Reynolds number but high grain-to-fluid density ratio may be dominated by collective effects associated with grain inertia in the granular collisional layer.
风成沉积物搬运在火星以及其他外星环境中都有观察到,其形成的波纹和沙丘与地球上的类似。寻找行星床形的地球类似物,以及能够在行星条件下再现其形成的环境模拟实验,是质疑我们对地貌过程在异常环境条件下的理解的有力方法。在这里,我们在一个放置在真空室中的闭路风洞中进行了沉积物搬运实验室实验,并在极低的压力下操作,以表明火星条件属于以前未探索过的跳跃区。启动跳跃所需的临界风速仅通过最先进的模型在颗粒和空气之间的密度比为[Formula: see text]时进行定量预测,但出乎意料的是,对于更高的密度比,它会下降到低得多的值。相比之下,冲击波纹在整个研究的压力范围内不断出现在颗粒床上,其特征波长和传播速度基本上与压力无关。将这些发现与现有模型进行比较表明,在低雷诺数但高颗粒与流体密度比的情况下,沉积物搬运可能由与颗粒碰撞层中的颗粒惯性相关的集体效应主导。