Jia Pan, Andreotti Bruno, Claudin Philippe
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636/Ecole Supérieure de Physique et Chimie Industrielles Paris-Paris Science Lettres Research University/Université Pierre et Marie Curie-Sorbonne Universités/Université Denis Diderot-Sorbonne Paris Cité, 75005 Paris, France.
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636/Ecole Supérieure de Physique et Chimie Industrielles Paris-Paris Science Lettres Research University/Université Pierre et Marie Curie-Sorbonne Universités/Université Denis Diderot-Sorbonne Paris Cité, 75005 Paris, France
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2509-2514. doi: 10.1073/pnas.1612176114. Epub 2017 Feb 21.
Explaining the unexpected presence of dune-like patterns at the surface of the comet 67P/Churyumov-Gerasimenko requires conceptual and quantitative advances in the understanding of surface and outgassing processes. We show here that vapor flow emitted by the comet around its perihelion spreads laterally in a surface layer, due to the strong pressure difference between zones illuminated by sunlight and those in shadow. For such thermal winds to be dense enough to transport grains-10 times greater than previous estimates-outgassing must take place through a surface porous granular layer, and that layer must be composed of grains whose roughness lowers cohesion consistently with contact mechanics. The linear stability analysis of the problem, entirely tested against laboratory experiments, quantitatively predicts the emergence of bedforms in the observed wavelength range and their propagation at the scale of a comet revolution. Although generated by a rarefied atmosphere, they are paradoxically analogous to ripples emerging on granular beds submitted to viscous shear flows. This quantitative agreement shows that our understanding of the coupling between hydrodynamics and sediment transport is able to account for bedform emergence in extreme conditions and provides a reliable tool to predict the erosion and accretion processes controlling the evolution of small solar system bodies.
解释在67P/丘留莫夫-格拉西缅科彗星表面出现类似沙丘图案这一意外现象,需要在理解表面和气体排放过程方面取得概念和定量上的进展。我们在此表明,彗星在近日点附近释放出的蒸气流,由于受阳光照射区域和阴影区域之间存在巨大压力差,会在表层横向扩散。要使这种热风密度足够大,能够搬运比先前估计大10倍的颗粒,气体排放必须通过表面多孔颗粒层进行,而且该层必须由粗糙度符合接触力学原理从而降低内聚力的颗粒组成。对该问题进行的线性稳定性分析,完全通过实验室实验验证,定量预测了在观测波长范围内床形的出现及其在彗星公转尺度上的传播。尽管它们是由稀薄大气产生的,但自相矛盾的是,它们类似于在受到粘性剪切流作用的颗粒床上出现的波纹。这种定量一致性表明,我们对流体动力学与沉积物输运之间耦合关系的理解能够解释极端条件下床形的出现,并为预测控制小太阳系天体演化的侵蚀和堆积过程提供了可靠工具。