Hofer Florian, Kamenik Anna S, Fernández-Quintero Monica L, Kraml Johannes, Liedl Klaus R
Center for Molecular Biosciences Innsbruck, Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
Front Mol Biosci. 2021 Jan 12;7:603644. doi: 10.3389/fmolb.2020.603644. eCollection 2020.
Susceptibility to endosomal degradation is a decisive contribution to a protein's immunogenicity. It is assumed that the processing kinetics of structured proteins are inherently linked to their probability of local unfolding. In this study, we quantify the impact of endosomal acidification on the conformational stability of the major timothy grass pollen allergen Phl p 6. We use state of the art sampling approaches in combination with constant pH MD techniques to profile pH-dependent local unfolding events in atomistic detail. Integrating our findings into the current view on type 1 allergic sensitization, we characterize local protein dynamics in the context of proteolytic degradation at neutral and acidic pH for the wild type protein and point mutants with varying proteolytic stability. We analyze extensive simulation data using Markov state models and retrieve highly reliable thermodynamic and kinetic information at varying pH levels. Thereby we capture the impact of endolysosomal acidification on the structure and dynamics of the Phl p 6 mutants. We find that upon protonation at lower pH values, the conformational flexibilities in key areas of the wild type protein, i.e., T-cell epitopes and early proteolytic cleavage sites, increase significantly. A decrease of the pH even leads to local unfolding in otherwise stable secondary structure elements, which is a prerequisite for proteolytic cleavage. This effect is even more pronounced in the destabilized mutant, while no unfolding was observed for the stabilized mutant. In summary, we report detailed structural models which rationalize the experimentally observed cleavage pattern during endosomal acidification.
对内体降解的敏感性是蛋白质免疫原性的决定性因素。据推测,结构化蛋白质的加工动力学与其局部解折叠的概率内在相关。在本研究中,我们量化了内体酸化对主要梯牧草花粉过敏原Phl p 6构象稳定性的影响。我们使用先进的采样方法结合恒定pH分子动力学技术,以原子水平详细描绘pH依赖的局部解折叠事件。将我们的研究结果纳入当前关于1型过敏致敏的观点中,我们在中性和酸性pH条件下,针对野生型蛋白和具有不同蛋白水解稳定性的点突变体,在蛋白水解降解的背景下表征局部蛋白质动力学。我们使用马尔可夫状态模型分析大量模拟数据,并获取不同pH水平下高度可靠的热力学和动力学信息。由此,我们捕捉了内溶酶体酸化对Phl p 6突变体结构和动力学的影响。我们发现,在较低pH值质子化时,野生型蛋白关键区域(即T细胞表位和早期蛋白水解切割位点)的构象灵活性显著增加。pH降低甚至导致原本稳定的二级结构元件局部解折叠,这是蛋白水解切割的前提条件。这种效应在不稳定突变体中更为明显,而稳定突变体未观察到解折叠。总之,我们报告了详细的结构模型,这些模型解释了在内体酸化过程中实验观察到的切割模式。