From the Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, South Carolina.
ASAIO J. 2021 Nov 1;67(11):1263-1267. doi: 10.1097/MAT.0000000000001366.
This study contrasts the abilities and mechanisms of two physicochemical, mathematical models to predict experimental bicarbonate kinetics, hence, buffer transport, during a hemodialysis (HD) treatment in chronic renal failure patients. The existing Sargent model assumes that the body fluids can be described as a single, homogeneous extracellular fluid (EC) compartment whose volume decreases because of a constant ultrafiltration rate during HD. Bicarbonate and acetate transport between HD fluid and the EC compartment are by convection and diffusion with acetate metabolized in that compartment. The new model formulated in this study assumes the same conditions as Sargent et al., but constrains ion concentrations in the EC to be electrically neutral at all times. This constraint requires inclusion in the EC of other transportable small ions, Na+, K+, Cl- and unidentified, anionic organic acids in addition to an electrical charge on impermeable albumin. The findings are that the new electroneutrality model predicts plasma bicarbonate-concentration kinetics as closely as the Sargent model, but bicarbonate transport is an unlikely mechanism. Rather, the findings are better explained by rapid interconversion of CO2 and bicarbonate in this simplified EC compartment model. The results of this study bring into question the ability of the Sargent et al. hypothesized H+-mobilization model to explain buffer-transport kinetics during HD.
本研究对比了两种物理化学、数学模型在预测慢性肾衰竭患者血液透析(HD)治疗过程中实验性碳酸氢盐动力学(即缓冲液转运)方面的能力和机制。现有的 Sargent 模型假设体液可以被描述为一个单一的、均匀的细胞外液(EC)隔室,由于 HD 期间存在恒定的超滤率,其体积会减少。HD 液和 EC 隔室之间的碳酸氢盐和醋酸盐转运是通过对流和扩散进行的,醋酸盐在该隔室中代谢。本研究中提出的新模型假设与 Sargent 等人相同的条件,但始终将 EC 中的离子浓度保持电中性。这种约束要求在 EC 中除不可渗透的白蛋白的电荷外,还包括其他可转运的小离子(如 Na+、K+、Cl-和未识别的阴离子有机酸)。研究结果表明,新的电中性模型可以像 Sargent 模型一样准确地预测血浆碳酸氢盐浓度动力学,但碳酸氢盐转运不太可能是一种机制。相反,这些结果更能通过简化的 EC 隔室模型中 CO2 和碳酸氢盐的快速相互转化来解释。本研究的结果质疑了 Sargent 等人假设的 H+-动员模型在解释 HD 期间缓冲液转运动力学的能力。