Suppr超能文献

《多云有肽的可能性:云托管环境的可访问性、可扩展性和可重复性》

Cloudy with a Chance of Peptides: Accessibility, Scalability, and Reproducibility with Cloud-Hosted Environments.

作者信息

Neely Benjamin A

机构信息

Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States.

出版信息

J Proteome Res. 2021 Apr 2;20(4):2076-2082. doi: 10.1021/acs.jproteome.0c00920. Epub 2021 Jan 29.

Abstract

Cloud-hosted environments offer known benefits when computational needs outstrip affordable local workstations, enabling high-performance computation without a physical cluster. What has been less apparent, especially to novice users, is the transformative potential for cloud-hosted environments to bridge the digital divide that exists between poorly funded and well-resourced laboratories, and to empower modern research groups with remote personnel and trainees. Using cloud-based proteomic bioinformatic pipelines is not predicated on analyzing thousands of files, but instead can be used to improve accessibility during remote work, extreme weather, or working with under-resourced remote trainees. The general benefits of cloud-hosted environments also allow for scalability and encourage reproducibility. Since one possible hurdle to adoption is awareness, this paper is written with the nonexpert in mind. The benefits and possibilities of using a cloud-hosted environment are emphasized by describing how to setup an example workflow to analyze a previously published label-free data-dependent acquisition mass spectrometry data set of mammalian urine. Cost and time of analysis are compared using different computational tiers, and important practical considerations are described. Overall, cloud-hosted environments offer the potential to solve large computational problems, but more importantly can enable and accelerate research in smaller research groups with inadequate infrastructure and suboptimal local computational resources.

摘要

当计算需求超过负担得起的本地工作站时,云托管环境具有已知的优势,可在无需物理集群的情况下实现高性能计算。对于新手用户来说,尤其是不那么明显的是,云托管环境具有变革潜力,可弥合资金不足和资源充足的实验室之间存在的数字鸿沟,并为拥有远程人员和学员的现代研究团队赋能。使用基于云的蛋白质组学生物信息学管道并非基于分析数千个文件,而是可用于在远程工作、极端天气或与资源不足的远程学员合作期间提高可及性。云托管环境的一般优势还允许扩展并鼓励可重复性。由于采用的一个可能障碍是认知度,本文是为非专业人士而写的。通过描述如何设置一个示例工作流程来分析先前发表的哺乳动物尿液的无标记数据依赖采集质谱数据集,强调了使用云托管环境的好处和可能性。使用不同的计算层级比较了分析成本和时间,并描述了重要的实际注意事项。总体而言,云托管环境有潜力解决大型计算问题,但更重要的是,它可以在基础设施不足和本地计算资源欠佳的较小研究团队中推动并加速研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c511/8637422/bfd0c76adb78/nihms-1753116-f0002.jpg

相似文献

9
Cloud computing applications for biomedical science: A perspective.云计算在生物医学科学中的应用:一个视角。
PLoS Comput Biol. 2018 Jun 14;14(6):e1006144. doi: 10.1371/journal.pcbi.1006144. eCollection 2018 Jun.

引用本文的文献

1
Proteomic repository data submission, dissemination, and reuse: key messages.蛋白质组学知识库数据提交、发布和再利用:关键信息。
Expert Rev Proteomics. 2022 Jul-Dec;19(7-12):297-310. doi: 10.1080/14789450.2022.2160324. Epub 2022 Dec 26.
2
Deep learning neural network tools for proteomics.深度学习神经网络工具在蛋白质组学中的应用。
Cell Rep Methods. 2021 May 17;1(2):100003. doi: 10.1016/j.crmeth.2021.100003. eCollection 2021 Jun 21.
3
ppx: Programmatic Access to Proteomics Data Repositories.ppx:蛋白质组学数据存储库的编程访问。
J Proteome Res. 2021 Sep 3;20(9):4621-4624. doi: 10.1021/acs.jproteome.1c00454. Epub 2021 Aug 3.

本文引用的文献

4
Spritz: A Proteogenomic Database Engine.Spritz:一个蛋白质基因组数据库引擎。
J Proteome Res. 2021 Apr 2;20(4):1826-1834. doi: 10.1021/acs.jproteome.0c00407. Epub 2020 Oct 7.
5
Proteomics in Non-model Organisms: A New Analytical Frontier.非模式生物蛋白质组学:一个新的分析前沿领域。
J Proteome Res. 2020 Sep 4;19(9):3595-3606. doi: 10.1021/acs.jproteome.0c00448. Epub 2020 Aug 20.
9
One Thousand and One Software for Proteomics: Tales of the Toolmakers of Science.一千零一软件:蛋白质组学的故事。
J Proteome Res. 2019 Oct 4;18(10):3580-3585. doi: 10.1021/acs.jproteome.9b00219. Epub 2019 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验