Suppr超能文献

多目标稀疏神经网络的关节结构和参数优化。

Joint Structure and Parameter Optimization of Multiobjective Sparse Neural Network.

机构信息

Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China,

出版信息

Neural Comput. 2021 Mar 26;33(4):1113-1143. doi: 10.1162/neco_a_01368.

Abstract

This work addresses the problem of network pruning and proposes a novel joint training method based on a multiobjective optimization model. Most of the state-of-the-art pruning methods rely on user experience for selecting the sparsity ratio of the weight matrices or tensors, and thus suffer from severe performance reduction with inappropriate user-defined parameters. Moreover, networks might be inferior due to the inefficient connecting architecture search, especially when it is highly sparse. It is revealed in this work that the network model might maintain sparse characteristic in the early stage of the backpropagation (BP) training process, and evolutionary computation-based algorithms can accurately discover the connecting architecture with satisfying network performance. In particular, we establish a multiobjective sparse model for network pruning and propose an efficient approach that combines BP training and two modified multiobjective evolutionary algorithms (MOEAs). The BP algorithm converges quickly, and the two MOEAs can search for the optimal sparse structure and refine the weights, respectively. Experiments are also included to prove the benefits of the proposed algorithm. We show that the proposed method can obtain a desired Pareto front (PF), leading to a better pruning result comparing to the state-of-the-art methods, especially when the network structure is highly sparse.

摘要

这项工作解决了网络剪枝问题,并提出了一种基于多目标优化模型的新的联合训练方法。大多数最先进的剪枝方法依赖于用户经验来选择权重矩阵或张量的稀疏率,因此在使用不适当的用户定义参数时会遭受严重的性能下降。此外,由于连接架构搜索效率低下,网络可能会表现不佳,尤其是在网络非常稀疏的情况下。本工作表明,网络模型在反向传播 (BP) 训练过程的早期可能保持稀疏特征,基于进化计算的算法可以准确发现具有令人满意的网络性能的连接架构。具体来说,我们为网络剪枝建立了一个多目标稀疏模型,并提出了一种将 BP 训练与两种改进的多目标进化算法 (MOEAs) 相结合的有效方法。BP 算法收敛迅速,而两种 MOEAs 可以分别搜索最优稀疏结构和细化权重。实验也证明了所提出算法的优势。我们表明,所提出的方法可以获得期望的帕累托前沿 (PF),与最先进的方法相比,获得了更好的剪枝结果,尤其是当网络结构非常稀疏时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验