School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China.
Sensors (Basel). 2021 Jan 27;21(3):832. doi: 10.3390/s21030832.
The integrated electronic nose (e-nose) design, which integrates sensor arrays and recognition algorithms, has been widely used in different fields. However, the current integrated e-nose system usually suffers from the problem of low accuracy with simple algorithm structure and slow speed with complex algorithm structure. In this article, we propose a method for implementing a deep neural network for odor identification in a small-scale Field-Programmable Gate Array (FPGA). First, a lightweight odor identification with depthwise separable convolutional neural network (OI-DSCNN) is proposed to reduce parameters and accelerate hardware implementation performance. Next, the OI-DSCNN is implemented in a Zynq-7020 SoC chip based on the quantization method, namely, the saturation-flooring KL divergence scheme (SF-KL). The OI-DSCNN was conducted on the Chinese herbal medicine dataset, and simulation experiments and hardware implementation validate its effectiveness. These findings shed light on quick and accurate odor identification in the FPGA.
集成电子鼻(e-nose)设计集成了传感器阵列和识别算法,已广泛应用于不同领域。然而,当前的集成电子鼻系统通常存在算法结构简单导致精度低、算法结构复杂导致速度慢的问题。在本文中,我们提出了一种在小型现场可编程门阵列(FPGA)中实现深度神经网络进行气味识别的方法。首先,提出了一种轻量级的具有深度可分离卷积神经网络的气味识别方法(OI-DSCNN),以减少参数并提高硬件实现性能。接下来,基于量化方法,即饱和地板 KL 散度方案(SF-KL),在 Zynq-7020 SoC 芯片上实现了 OI-DSCNN。在中草药数据集上进行了 OI-DSCNN 的仿真实验和硬件实现,验证了其有效性。这些发现为 FPGA 中的快速准确气味识别提供了思路。