Suppr超能文献

基于人工神经网络的气动控制阀故障检测与诊断方法的研究。

Development of a Methodology Using Artificial Neural Network in the Detection and Diagnosis of Faults for Pneumatic Control Valves.

机构信息

Laboratory of Petroleum Automation-LAUT, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil.

出版信息

Sensors (Basel). 2021 Jan 27;21(3):853. doi: 10.3390/s21030853.

Abstract

To satisfy the market, competition in the industrial sector aims for productivity and safety in industrial plant control systems. The appearance of a fault can compromise the system's proper functioning process. Therefore, Fault Detection and Diagnosis (FDD) methods contribute to avoiding any undesired events, as there are techniques and methods that study the detection, isolation, identification and, consequently, fault diagnosis. In this work, a new methodology that uses faults emulation to obtain parameters similar to the Development and Application of Methods for Diagnosis of Actuators in Industrial Control Systems (DAMADICS) benchmark model will be developed. This methodology uses previous information from tests on sensors with and without faults to detect and classify the situation of the plant and, in the presence of faults, perform the diagnosis through a process of elimination in a hierarchical manner. In this way, the definition of residue signature is used as well as the creation of a decision tree. The whole process is carried out incorporating FDD techniques, through the Non-Linear Auto-Regressive Neural Network Model With Exogenous Inputs (NARX), in the diagnosis of the behavioral prediction of the signals to generate the residual values. Then, it is applied to the construction of the decision tree based on the most significant residue of a certain signal, enabling the process of acquisition and formation of the signature matrix. With the procedures in this article, it is possible to demonstrate a practical and systematic method of how to emulate faults for control valves and the possibility of carrying out an analysis of the data to acquire signatures of the fault behavior. Finally, simulations resulting from the most sensitized variables for the production of residuals that is generated by neural networks are presented, which are used to obtain signatures and isolate the flaws. The process proves to be efficient in computational time and makes it easy to present a fault diagnosis strategy that can be reproduced in other processes.

摘要

为了满足市场需求,工业领域的竞争旨在实现工业工厂控制系统的生产力和安全性。故障的出现会危及系统的正常运行过程。因此,故障检测与诊断(FDD)方法有助于避免任何意外事件,因为有技术和方法可以研究检测、隔离、识别,从而进行故障诊断。在这项工作中,将开发一种新的方法,该方法使用故障仿真来获取类似于开发和应用工业控制系统执行器诊断方法(DAMADICS)基准模型的参数。该方法使用带有和不带有故障的传感器测试的先前信息来检测和分类工厂的状态,并且在存在故障的情况下,通过分层的排除过程进行诊断。这样,就可以使用残差特征的定义以及决策树的创建。整个过程通过带有外部输入的非线性自回归神经网络模型(NARX),结合故障检测与诊断技术,对信号的行为预测进行诊断,以生成残差值。然后,将其应用于基于某个信号的最重要残差的决策树构建,从而实现获取和形成特征矩阵的过程。通过本文中的程序,可以展示一种用于控制阀故障仿真的实用且系统的方法,以及进行数据分析以获取故障行为特征的可能性。最后,呈现了由神经网络生成的残差产生的最敏感变量的模拟结果,这些结果用于获得特征并隔离缺陷。该过程在计算时间上证明是高效的,并且易于呈现可以在其他过程中复制的故障诊断策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/7866054/fbf5e4ab4713/sensors-21-00853-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验