Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco.
BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
BMC Ecol Evol. 2021 Jan 11;21(1):1. doi: 10.1186/s12862-020-01734-0.
The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals.
We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution.
Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
碳酸钙生物矿化过程在后生动物进化过程中多次出现。在刺胞动物门中,生物矿化主要在六放珊瑚亚门(即石珊瑚)中进行研究,而在八放珊瑚亚门(即红珊瑚)中则相对较少;这两个亚门大约在 6 亿年前分化。珍贵的地中海红珊瑚 Corallium rubrum 是一种八放珊瑚物种,它产生两种不同的高镁方解石生物矿物,即轴向骨骼和骨针。为了深入了解红珊瑚生物矿化过程和刺胞动物生物矿化进化,我们研究了其两种生物矿物的有机基质(OM)形成的蛋白质组。
我们结合高分辨率质谱和转录组分析研究了轴向骨骼和骨针的 OM 组成。我们总共鉴定了 102 种 OM 蛋白,其中 52 种存在于两种红珊瑚生物矿物中,每种部分中骨针蛋白最为丰富。与造礁珊瑚不同的是,红珊瑚有机基质含有大量胶原蛋白样蛋白。聚集素样糖蛋白和具有糖结合结构域的蛋白也占主导地位。27 种和 23 种蛋白质分别被唯一分配到轴向骨骼和骨针中。这些 OM 蛋白的推断调节功能表明,两种生物矿物之间的差异是由于基质网络的建模,而不是特定结构成分的存在。至少有一种 OM 成分可能是在八放珊瑚进化的早期从原核生物中水平转移而来的。
我们的研究结果表明,红珊瑚轴向骨骼的钙化可能代表了祖先海鸡冠角质轴的次生钙化。此外,与石珊瑚骨骼的比较突出了六放珊瑚和八放珊瑚的生物矿化 OM 之间相似蛋白的比例较低,表明在珊瑚动物中钙化是独立获得的。