Suppr超能文献

各种 RARS1 突变在 Pelizaeus-Merzbacher-like 病中的不同致病机制。

Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease.

机构信息

State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.

Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France.

出版信息

Sci China Life Sci. 2021 Oct;64(10):1645-1660. doi: 10.1007/s11427-020-1838-2. Epub 2021 Jan 28.

Abstract

Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.

摘要

编码氨酰-tRNA 合成酶的基因突变与各种中枢神经系统疾病高度相关。包括 c.5A>G、p.D2G;c.1367C>T、p.S456L;c.1535G>A、p.R512Q 和 c.1846_1847del、p.Y616Lfs*6 的反复突变,这些突变都与 Pelizaeus-Merzbacher 样疾病(PMLD)有关,但发病机制尚不清楚。在这些突变中,c.5A>G 是最广泛报道的突变,导致长形式 hArgRS N 端延伸中的 p.D2G 突变。在这里,我们展示了 R512Q 取代和 ΔC 突变对 hArgRS 结构和功能的有害影响,而最常见的突变 c.5A>G,p.D2G 以不同的方式发挥作用,而不会损害 hArgRS 活性。核苷酸取代 c.5A>G 降低了 hArgRS mRNA 的翻译,而上游开放阅读框有助于下游主要 ORF 的翻译抑制。总之,我们的结果阐明了 PMLD 中各种 RARS1 突变的不同致病机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验